Optimizing SciMark* 2.0
Using Intel® Software Products

By Henry Gabb and Chirag G. Shah,
Intel Corporation

November, 2005




Optimizing the SciMark 2.0 Benchmark 11/1/2005

Performance tests and ratings are measured using specific computer systems and/or
components and reflect the approximate performance of Intel products as measured by
those tests. Any difference in system hardware or software design or configuration may
affect actual performance. Buyers should consult other sources of information to evaluate
the performance of systems or components they are considering purchasing. For more
information on performance tests and on the performance of Intel products, reference
[www.intel.com/software/products] or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED "AS
IS" WITH NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR
SAMPLE. INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS
DOCUMENT AND HAS NO LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES ARISING
FROM OR IN CONNECTION WITH THE USE OF THIS DOCUMENT.




Introduction

SciMark* 2.0 is a floating-point benchmark from the National Institute of Standards and
Technology. It consists of five computational kernels:

1. FFT - performs a complex 1D fast Fourier transform

2. SOR - solves the Laplace equation in 2D by successive over-relaxation
3. MC - computes n by Monte Carlo integration

4. MV - performs sparse matrix-vector multiplication

5. LU - computes the LU factorization of a dense N x N matrix

These kernels represent the types of calculations that commonly occur in numerically-
intensive scientific applications.

SciMark 2.0 is widely-used to measure CPU performance. As such, this benchmark is
important to Intel. Each kernel except MC has small and large problem sizes (Table 1). The
small problems are designed to test raw CPU performance and the effectiveness of the
cache hierarchy. The large problems stress the memory subsystem because they do not fit
in cache. The MC kernel only uses scalars so there is no distinction between the small and
large problems.

Benchmark Problem Size
Small Large
FFT N = 1024 N = 1048576
SOR 100 x 100 1000 x 1000
MV N = 1000, NZ = 5000 N = 100000, NZ = 1000000
LU 100 x 100 1000 x 1000

Table 1. Small and large problem sizes for the SciMark 2.0 kernels. Note that there is no
distinction between small and large problem sizes for the MC kernel.

In order to measure the success of a software tuning project, it is necessary to generate

baseline performance data. Both Java* and ANSI C versions of SciMark 2.0 are available.
The ANSI C version was used for the present study. Unless otherwise noted, the following
dual-processor server was used for all performance measurements:



http://math.nist.gov/scimark2/index.html

Hardware

CPU Intel® Xeon® Processor (3.6 GHz Xeon 2
MB L2 cache) with Intel® EM64T

Motherboard Intel Server Board SE7520AF2

Memory 512 MB DDR2

BIOS

Version P06

Adjacent Cache Line Prefetch ON

Hardware Prefetch ON

Hyper-Threading Technology OFF

Software

Operating system Red Hat Enterprise Linux* AS 3

Linux Kernel 2.4.21-20.EL #1 SMP

Intel® C++ Compiler for Linux 8.1 (I_cce_pc_8.1.024)

Intel® Cluster Math Kernel Library 7.2 (I_cluster_mkl_7.2.008)

GNU* C compiler gcc* 3.2.3

As the GNU C compiler is readily available on Linux, gcc was used to set the performance
baseline. Results are reported in millions of floating-point operations per second (MFLOPS).
Thus, higher values indicate better performance. Although exact performance is reported,
the SciMark 2.0 FAQ states that actual performance may vary by +5%. However, the
observed performance variations were generally much smaller than 5%.



http://math.nist.gov/scimark2/faq.html

Benchmark Performance (MFLOPS)
Small Large

FFT 149 36

SOR 401 393
MC 47 47

MV 213 211
LU 297 292
Composite score 221 196

Table 2. The GNU C compiler was used to generate preliminary performance data for SciMark 2.0
compiled at the default optimization level.

Table 2 displays SciMark 2.0 performance using the GNU C compiler at default optimization.
However, the GNU C compiler is capable of more advanced optimization so additional
compiler options (-O3 -march=nocona -ffast-math -mfpmath=sse) were used to set a more
realistic performance baseline. Table 3 shows the best SciMark 2.0 performance achieved
with gcc during this study. These results will be used as the performance baseline to
measure tuning effectiveness.

Benchmark Performance (MFLOPS)
Small Large

FFT 510 45

SOR 524 495
MC 206 206
MV 857 453
LU 884 392
Composite score 596 318

Table 3. The GNU C compiler with aggressive optimization was used to generate baseline
performance data. SciMark 2.0 was built with the following compiler options:

-03 -march=nocona -ffast-math -mfpmath=sse.




Using the Intel C++ Compiler for Linux to Improve
Performance

It is standard practice to submit results for unmodified benchmarks in order to make direct
comparisons between results and to keep an even playing field between competitors.
Therefore, before examining source code modifications that could potentially improve
performance, SciMark 2.0 was simply recompiled with the Intel C++ Compiler for Linux. The
Intel compilers are designed to take maximum advantage of Intel processor architecture so
some performance improvement is expected over the GNU compiler, which is designed for
generality rather than maximum performance. As such, recompiling SciMark 2.0 with the
Intel compiler at default optimization improves the benchmark composite score relative to
the GNU baseline as shown in Table 4. Similar results were obtained for the large problem
sizes, as shown in Table 5.

Benchmark Performance (MFLOPS) for Small Problems
GNU baseline Intel baseline Speedup
FFT 510 512 1.0
SOR 524 759 1.4
MC 206 153 0.7
MV 857 883 1.0
LU 884 1282 1.4
Composite score | 596 718 1.2

Table 4. The Intel C++ Compiler for Linux at the default optimization level improves the
benchmark composite score relative to the GNU baseline for the small problem sizes.




Benchmark Performance (MFLOPS) for Large Problems
GNU baseline Intel baseline Speedup
FFT 45 45 1.0
SOR 495 720 1.5
MC 206 153 0.7
MV 453 455 1.0
LU 392 402 1.0
Composite score | 318 355 1.1

Table 5. The Intel C++ Compiler for Linux at the default optimization level improves the
benchmark composite score relative to the GNU baseline for the large problem sizes.

Though default optimization yields good results, more aggressive optimization can improve
performance even further. The -fast option encompasses several common compiler
optimizations: -03, -xP, -ipo. The -03 option enables the default optimizations
plus other optimizations designed to improve the performance of floating-point-intensive
loops. The Intel compilers also have options to optimize for specific Intel processor families.
The -XP flag tells the compiler to generate a binary tuned specifically for Intel processors
that support Streaming SIMD Extensions 3 (SSE3) instructions. The —1p0 option enables
interprocedural optimizations such as inline function expansion.

By default, the Intel compilers conservatively assume that some memory locations are
aliased and are referenced by more than one variable. This dependency prevents the
compiler from performing some optimizations. The SciMark 2.0 source code does not
contain aliased memory locations so the —fno-al ias flag was also used. (It is worth
noting that improper use of the —fno-alias flag can result in incorrect calculations.)

Aggressive optimization with the Intel C++ compiler resulted in significantly greater
performance relative to the GNU baseline for both the small, as shown in Table 6, and the
large problem sizes, as shown in Table 7. The Intel compiler doubles the performance of
some kernels.




Benchmark Performance (MFLOPS) for Small Problems
GNU baseline Intel optimized Speedup
FFT 510 521 1.0
SOR 524 1092 2.1
MC 206 447 2.2
MV 857 832 1.0
LU 884 1827 2.1
Composite score | 596 943 1.6

Table 6. The Intel C++ Compiler for Linux using the “-~fast -fno-alias” optimization flags
significantly improves the benchmark composite score relative to the GNU baseline for the small
problem sizes. Performance is also significantly improved for three of the five kernels.

Benchmark Performance (MFLOPS) for Large Problems
GNU baseline Intel compiler Speedup
FFT 45 45 1.0
SOR 495 1015 2.1
MC 206 447 2.2
MV 453 457 1.0
LU 392 389 1.0
Composite score | 318 389 1.2

Table 7. The Intel C++ Compiler for Linux using the “~fast -fno-alias” optimization flags
further improves the benchmark composite score relative to the GNU baseline for the large

problem sizes.

Performance is also significantly improved for two of the five kernels.




Using the Intel Math Kernel Library (MKL) to Improve
Performance

Most benchmark code is designed for portability rather than maximum performance on a
particular platform. However, optimized numerical libraries are readily available for most
platforms. It is standard practice to use numerical libraries for common mathematical
operations. For example, the Basic Linear Algebra Subprograms (BLAS) and the Linear
Algebra Package (LAPACK) provide standard interfaces to many linear algebra functions.
Fourier transform libraries are also available.

Intel® Math Kernel Library (Intel® MKL) contains highly optimized BLAS, LAPACK, and
Fourier transform implementations. It also contains two vector libraries for random number
generation and transcendental functions. These capabilities are directly applicable to the
SciMark 2.0 FFT, MC, MV, and LU kernels. Many Intel MKL functions are also threaded to
take advantage of multiprocessor systems like the one used in this study. The compiler-level
tuning described in the previous section did not modify the original benchmark source code.
That constraint is now removed to accommodate MKL.

Tuning the FFT Kernel with the Intel MKL Discrete Fourier
Transform API

The fast Fourier transform is a well-studied algorithm that is used in a wide variety of
applications. Developers can often choose from several off-the-shelf discrete Fourier
transform (DFT) libraries. Unlike linear algebra, however, there are no standard calling
conventions for DFT functions. Replacing the hand-coded transform in the SciMark 2.0 FFT
kernel therefore requires some code modification in order to use Intel MKL.

Rather than attempting to provide a unique function for every DFT permutation, Intel MKL
uses a general-purpose API. Developers describe the desired transform to Intel MKL before
initiating the computation. For example, the SciMark 2.0 FFT kernel computes a complex 1D
forward-backward transform on an array of 1024 numbers. With Intel MKL, the developer
creates a descriptor of this transform as shown in the following code.

#include <mkl.h>

int N = 1024;

long status;

double *x = RandomVector ((2 * N), R);
double scale = 1.0 / (double)N;
DFTI_DESCRIPTOR *dftiHandle;

status = DftiCreateDescriptor (&dftiHandle, DFTI_DOUBLE, DFTI_COMPLEX, 1, N);
status = DftiSetValue (dftiHandle, DFTI_BACKWARD_SCALE, scale);

status = DftiCommitDescriptor (dftiHandle);

status = DftiComputeForward (dftiHandle, x);

status = DftiComputeBackward (dftiHandle, x);

status = DftiFreeDescriptor (&dftiHandle);




The call to DftiCreateDescriptor allocates and initializes a descriptor for a double
precision, complex 1D DFT of size N = 1024. (Note that the transform array is dimensioned
to 2048 to accommodate the real and imaginary parts of each complex number.)
DftiSetValue applies the specified scaling factor to the backward transform.
DftiCommitDescriptor does what its name implies. dftiHandle can now be used to
transform any array that is consistent with the descriptor. DftiComputeForward and
DftiComputeBackward perform the actual forward and backward transforms on the array
using the supplied descriptor. Descriptors can be reused, but when they are no longer
needed, DFftiFreeDescriptor frees the memory allocated to hold the descriptor. This
versatile APl allows developers to describe and compute a wide variety of DFT’s. It is also
much easier than trying to remember the name and prototype of numerous functions that
compute a specific type of DFT.

Replacing the hand-coded DFT in the SciMark 2.0 FFT kernel with MKL gives a significant
speedup over baseline performance (Table 8). It is worth noting that on multiprocessor
systems, Intel MKL automatically computes multidimensional DFT’s in parallel.

FFT Benchmark Performance (MFLOPS)

GNU baseline MKL Speedup
Small problem (N = 1024) 510 1817 3.6
Large problem (N = 1048576) 45 600 13.3

Table 8. Replacing the hand-coded transform in the SciMark 2.0 FFT kernel with Intel MKL

significantly improves performance.

Tuning the LU Kernel with the Intel MKL LAPACK
Implementation

Like the Fourier transform, LU factorization is another common mathematical operation. The
MKL LAPACK implementation contains a suitable function for the SciMark 2.0 LU kernel.
Specifically, the dgetr ¥ function computes the LU factorization of a general, double
precision M x N matrix. Replacing the hand-coded LU factorization function in SciMark 2.0
with dgetrT requires attention to some important details because SciMark 2.0 is written in
C whereas LAPACK only defines a Fortran interface.




Syntax

call dgetrf (m, n, A, lda, ipiv, info)
Input Parameters
m INTEGER Number of rows in matrix A (m >= 0)
n INTEGER Number of columns in matrix A (n >= 0)
A DOUBLE PRECISION Input matrix
DIMENSION (lda,*)
lda INTEGER First dimension of A
Output Parameters
A Overwritten by L and U
ipiv INTEGER Pivot indices
DIMENSION MAX(1, MIN(m,n))
info INTEGER Error code

Fortran is call-by-reference while C is call-by-value. The following function call adheres to
Fortran calling conventions:

dgetrf (&N, &N, A, &N, pivot, &error);

Arrays in C are often allocated as pointers-to-pointers, which are not necessarily contiguous
in memory. Much better performance is possible with contiguous data so the C interface to
dgetrf expects a vector. Finally, Fortran uses column-major ordering for arrays but C uses
row-major ordering. The data supplied to dgetrf must be in column-major order to get
correct results.

This attention to detail pays off because the Intel MKL LU factorization significantly improved
performance for the large problem, as shown in Table 9. Parallelism is an added bonus that
improves performance even further. Though Intel MKL performance for the small problem is
good, it is slightly worse than the best performance achieved by the Intel compiler. A
problem this small does not merit the LAPACK overhead. Similarly, a 100 x 100 LU
factorization is too small to benefit from multithreading.

LU Benchmark Performance (MFLOPS)
GNU baseline MKL Speedup
1-thread 2-threads 1-thread | 2-threads
Small problem 884 1680 N/A 1.9 N/A
Large problem 392 3837 6646 9.8 16.9

Table 9. Replacing the hand-coded LU factorization in

the SciMark 2.0 LU kernel with Intel MKL

significantly improves performance for the large problem.

Note: multithreading does not help the small problem because there is not enough work in a
100 x 100 LU factorization to merit thread creation.




Parallelizing the LU Kernel for a Cluster

In addition to thread-level parallelism, there is yet another advantage to using the Intel MKL
LAPACK implementation. Namely, Intel Cluster MKL supports the distributed-memory parallel
version of LAPACK called ScaLAPACK (Scalable LAPACK). Even though the large LU
problem in SciMark 2.0 is far too small to merit solution on a cluster, a ScaLAPACK
implementation is presented here to show that with a few adjustments, the Intel MKL version
of the LU kernel can solve much larger problems. These adjustments can be summarized in
four steps:

1. Initialize the process grid

2. Create a descriptor for each matrix that will be distributed across the process grid
3. Replace the call to dgetrf with pdgetrf (the ‘p’ is for parallel)

4. Release the process grid.

The ScaLAPACK SL_INIT routine creates a virtual process grid on which the computation will
be performed. This also allows each process to find its location in the process grid and
determine its sub-domain of the global computation. ScaLAPACK scales well because both
data and work are divided across multiple processes, which run in parallel on different
processors.

The developer creates a descriptor for each matrix involved in the computation. The
descriptor is simply an array that contains such information as the matrix type (e.g., dense
or banded), the handle for the process grid, the total number of rows and columns in the
global matrix, the blocking factor (discussed below), the process holding the first row and
column of the global matrix, and the leading dimension of the local sub-matrix. These
descriptors determine how Intel Cluster MKL distributes across the process grid. Only one
matrix descriptor is needed for LU factorization.

In ScaLAPACK, matrices are distributed in block-cyclic fashion (Figure 1). The block size
specified in the matrix descriptor greatly affects overall parallel performance. There are no
hard-and-fast rules for setting block size but, in general, a large block size minimizes
communication overhead at the expense of load balance. Conversely, a small block size
improves load balance but increases communication between the processes. This tradeoff is
illustrated in Figure 1 for a lower-triangular matrix. In the leftmost diagram in Figure 1, notice
that process-0 has significantly more of the matrix than process-3. The rightmost 2D block-
cyclic distribution is a definite improvement over a simple 1D block distribution. However,
communication is required along each process boundary. Comparing the two 2D block-cyclic
distributions shown in Figure 1, it is clear that the rightmost diagram has better load balance
but higher communication overhead.

10



E

1D block 1D block- 2D block- 2D block-

distribution cyclic cyclic cyclic
distribution distribution distribution

Poor Better
Load balance

Figure 1: ScaLAPACK uses block-cyclic data distribution to improve load balance.

Once the global matrix is properly distributed, the work can be distributed by replacing the
call to dgetrf (described in the previous section) with a call to its parallel counterpart:

pdgetrf_ (&global_rows, // Number of rows in the global matrix
&global_cols, // Number of columns in the global matrix
A, // Local sub-domain of global matrix
&one,
&one,
descA, // Descriptor for global matrix
pivot,
&error);

Comments highlight the key arguments that differentiate pdgetrf from dgetrT. It is
important to note that the LU matrix is now spread across multiple processes. The matrix
argument supplied to pdgetrf is actually a sub-matrix local to the calling process. Instead
of allocating memory for the entire LU matrix, the processes need only allocate enough
memory for their respective sub-domains. ScaLAPACK can harness the memory of an entire
cluster to solve linear algebra problems too large for a single computer.

Intel Cluster MKL makes it possible to perform the LU factorization on a 40000 x 40000
matrix using a small cluster [8 dual-3.0 GHz Intel Xeon processors (512 KB L2 cache nodes
and 2 GB memory per node) connected via Gigabit Ethernet and InfiniBand*] in a few
minutes (approximately 42000 MFLOPS using Gigabit Ethernet and 46000 MFLOPS using
InfiniBand). The Intel MPI Library 1.0 was used as the underlying communication layer
because it is fabric-independent. A double precision array of this size requires approximately
12 GB memory. Few computers have this much memory so a slow, out-of-core solution
would normally be required to solve a problem this large. If more compute nodes, and
hence, more memory, are added to the cluster, it is possible to solve even larger problems.

The previous discussion omits many details for the sake of brevity and only hints at the
power and flexibility of ScaLAPACK. The reader is referred to the ScaLAPACK User’s Guide
and the Intel Math Kernel Library — Reference Manual for more detailed examples of solving
large linear algebra problems.

11



http://www.netlib.org/scalapack/slug/index.html
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/219843.htm

Tuning the MC Kernel with the MKL Vector Statistical Library
and OpenMP

Simulation methods and stochastic algorithms require a set of randomly determined initial
conditions or a continuous stream of random numbers. Because random number generation
is such a common feature in computational methods, the Intel MKL Vector Statistical Library
(VSL) provides optimized random number generators for common probability distributions:
uniform, Gaussian, exponential, Poisson, etc. The basic random number generators can be
used to generate non-uniform distributions. Users can also register their own random
number generators with VSL.

VSL functions return vectors of random numbers because algorithms that use random
number generation usually need many random numbers instead of just one. Also, vector
functions give better performance than scalar random number generators.

The SciMark 2.0 MC kernel calculates n by randomly sampling points in a unit square and
determining whether these points fall within the upper-right quadrant of a unit circle
inscribing the square:

double MonteCarlo_integrate (int Num_samples)

{
int under_curve = 0;
int count;
Random R = new_Random_seed (SEED);
for (count = 0; count < Num_samples; count++)
{
double x = Random_nextDouble ®;
double y = Random_nextDouble ®;
if (xX*x + y*y <= 1.0) under_curve++;
Random_delete ®;
return ((double) under_curve / Num_samples) * 4.0;
}

The following steps are used to implement VSL in the SciMark 2.0 MC kernel:

1. For efficiency, VSL provides a vector of random numbers. Creating a vector for the
entire stream is impractical because Num_samples may be too large. Therefore, a
static array of defined size is used to hold blocks of the random number stream.

2. A random number stream of type VSLStreamStatePtr is initialized with a call to
vsINewStream, specifying which basic random number generator and seed to use.

3. Next, the call to vdRngUniform puts a uniform distribution of (2 * BLOCK_SIZE)
double precision random numbers of range [0.0 to 1.0] into the array rnBuf.

4. The random numbers are used in the n calculation.

5. The call to vsIDeleteStream deletes the random number stream when it is no
longer needed.

12



#include <mkl.h>

double MonteCarlo_integrate (int Num_samples)

{
int under_curve = 0;
int i, j, blocks, tail;
static double rnBuf[2 * BLOCK_SIZE];
double rnX, rnY;
VSLStreamStatePtr stream;
blocks = Num_samples /7 BLOCK_SIZE;
tail = Num_samples - blocks * BLOCK_SIZE;
vsINewStream (&stream, VSL_BRNG_MCG31, SEED);
for (i = 0; i < blocks; i++)
{
vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,
(2 * BLOCK_SIZE), rnBuf, 0.0, 1.0);
for (J = 0; j < BLOCK_SIZE; j++)
{
rnX = rnBuf[2*j];
rnY = rnBuf[2*j+1];
if (rnX*rnX + rnY*rnY <= 1.0) under_curve++;
}
¥
vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream, (2 * tail), rnBuf, 0.0, 1.0)
for (g = 0; j < tail; j++)
{
rnX = rnBuf[2*j];
rnY = rnBuf[2*j+1];
if (rnX*rnX + rnY*rnY <= 1.0) under_curve++;
¥
vslDeleteStream (&stream);
return ((double) under_curve / Num_samples) * 4.0;
}

The underlying MC algorithm has not been changed in the VSL implementation. Scalar
random number generation has simply been replaced by a vector approach, resulting in a
significant performance improvement, as shown in Table 10.

The MC algorithm is naturally parallel. Each random sample is independent of every other
sample. VSL functions are threadsafe so they can be used for parallel random number
generation. After the initial VSL implementation, OpenMP is used to parallelize the MC
kernel. OpenMP is a portable standard that it is easy-to-use and supported by the Intel
compilers. The VSL/OpenMP version of the SciMark 2.0 MC kernel is shown below:

13



nThreads = maxThreads = omp_get_max_threads ();
omp_set_num_threads (nThreads);

vsINewStream (&streamX, VSL_BRNG_MCG31, SEED);
vslCopyStream (&streamY, streamX);
vslLeapfrogStream (streamX, 0, 2);
vslLeapfrogStream (streamY, 1, 2);

streamXThread = (VSLStreamStatePtr) malloc (nThreads *

sizeof (VSLStreamStatePtr));
(VSLStreamStatePtr) malloc (nThreads *

sizeof (VSLStreamStatePtr));

streamYThread

for (i = 0; 1 < nThreads; i++)

{
vslCopyStream (&(streamXThread[i]), streamX);
vslCopyStream (&(streamYThread[i]), streamY);
vslSkipAheadStream (streamX, BLOCK_SIZE);
vslSkipAheadStream (streamY, BLOCK_SIZE);

}

#pragma omp parallel for \
reduction (+:under_curve) \

private (i, j, rnX, rnY, threadlD, thread_under_curve, rnBufX, rnBufY)

for (i = 0; i < blocks; i++)

{
threadlD = omp_get_thread_num (Q;

vdRngUniform (VSL_METHOD_DUNIFORM_STD, streamXThread[threadlD],
BLOCK_SIZE, rnBufX, 0.0, 1.0);

vdRngUniform (VSL_METHOD_DUNIFORM_STD, streamYThread[threadlD],
BLOCK_SI1ZE, rnBufY, 0.0, 1.0);

thread_under_curve = 0.0;

for (j = 0; j < BLOCK_SIZE; j++)
{

rmX = rnBufX[j];

rnY = rnBufY[j];

ifT (rnX*rnX + rnY*rnY <= 1.0) thread_under_curve++;

}

under_curve += thread_under_curve;
#pragma omp critical

vslCopyStreamState (streamXThread[threadlD], streamX);
vslCopyStreamState (streamYThread[threadlD], streamY);
vslISkipAheadStream (streamX, BLOCK_SIZE);
vslSkipAheadStream (streamY, BLOCK_SIZE);
} // End OpenMP critical section
} /7 End OpenMP parallel loop

Additional code modifications and VSL functions are needed to generate a reproducible
random number stream. First, each thread creates its own copy of the random number

stream with vsICopyStream. The call to vsISkipAheadStream ensures that their random

number sequences do no overlap. The OpenMP “parallel for” pragma creates threads
and executes the next for-loop in parallel. The OpenMP private clause creates thread-

private copies of the specified variables. The OpenMP “reduction (+:under_curve)”
clause creates a private copy of under_curve for each thread and then sums the values

from each thread at the end of the parallel computation.

14



There is a certain amount of system overhead associated with multithreading. Before
creating threads, the programmer must ask, “Does the amount of computation merit thread
creation?” For example, the trailing loop is too small to bother parallelizing. Most of the work
is in the leading loop. The MC kernel steadily increases the number of random samples used
to calculate = until the timer resolution threshold is reached. To avoid tripping this threshold
when the number of samples is too small to effectively use multiple threads, the number of
samples is set to 268,435,456 for the OpenMP tests. This is the value at which the serial
VSL implementation reaches the timer resolution threshold on the test system. Taking
advantage of both processors in the test system improves MC performance, as shown below
in Table 10.

MC Benchmark Performance (MFLOPS) Speedup
GNU baseline 206

Intel compiler only 447 2.2

Intel compiler + VSL 699 3.4

Intel compiler + VSL + OpenMP 1003 4.9

Table 10. Replacing the scalar random number generator with a vector random number generator
in the Intel MKL VSL and employing multiple threads improves performance of the SciMark 2.0
MC kernel relative to the GNU baseline.

Tuning the MV Kernel Using the Intel MKL Sparse BLAS
Capability

Matrix-vector multiplication is such a common operation that it is defined in BLAS. For
example, the dgemv function performs a double precision, matrix-vector product. Standard
BLAS functions are designed with dense matrices in mind but the SciMark 2.0 MV kernel
uses a sparse matrix, in which the majority of elements are zeros. One could treat a sparse
matrix as a dense matrix and simply use a standard BLAS routine, but this is wasteful in
terms of storage and computation. The large MV problem uses a 100,000 x 100,000 double
precision matrix with only 1,000,000 nonzero elements. A dense matrix representation would
require approximately 75 GB of memory.

Sparse matrices are common in technical computing so many compressed storage schemes
have been devised. These schemes typically store only the nonzero matrix elements and
their locations in the original 2D context. The SciMark 2.0 MV kernel uses a compressed
sparse row (CSR) format consisting of three arrays: one to store the nonzero values, one to
store the column index of each nonzero value, and one containing the index into the values
array for the first nonzero element of each row. The following example from the MKL
documentation illustrates the CSR format.

15



3 3
9 — 6 - 3 values:9§6§311§16
% 4 2 4 2 2 8
0 — 0 0 O
, 1 columns=(1 2 3 4 5 2 3 4 5)
0 O 2 0 O
5 rowindex=(1 6 7 8 9 10)
00 0 - O
8
0 0 0 O 16

The size of the values and column index arrays is equal to the number of nonzero elements.
The size of the row index array is equal to the number of rows plus one. Therefore, the
sparse representation of the MV large matrix requires only 16 MB of memory compared to 75
GB for the dense representation.

Fortunately, Intel MKL supports the CSR format so very little code modification is necessary
to use the corresponding Intel MKL sparse BLAS routine. First, it is necessary to include the
mkl_spblas.h header. Second, the Intel MKL sparse storage scheme starts array indices
at one rather than zero so the values in the MV row and column index arrays must be
incremented by one. Finally, the Intel MKL sparse BLAS function mkl_dcsrgemv is called to
compute a double precision, sparse matrix-vector multiplication in CSR format.

In general, BLAS is used for large computations because of the overhead incurred. The MV
small and large problems are too small to merit the overhead of BLAS. For such small
problems, the mkl_dcsrgemv function actually degrades performance relative to the GNU
and Intel compiler baselines (Tables 6 and 7). However, even the large MV problem, which
only requires 16 MB of memory, could be considered small when most modern workstations
measure memory in gigabytes.

A problem size of N = 1,600,000 and NZ = 250,000,000 takes advantage of a 64-bit address
space and amortizes the normal BLAS startup costs while keeping the same degree of
sparseness as the original large MV problem. The mkl_dcsrgemv function performs about
as well as the GNU and Intel compilers but it has an important advantage - it is already
threaded, as shown in Table 11.

16



Extra-large MV problem Performance (MFLOPS) Speedup
GNU compiler 183

Intel compiler 181 1.0

Intel compiler + MKL 177 1.0

Intel compiler + MKL + OpenMP 362 2.0

Table 11. Replacing the hand-coded sparse matrix-vector multiplication in the SciMark 2.0 MV
kernel with Intel MKL and enabling multithreading improves performance.

Note: a different system was used to generate this performance data. The differences are as
follows: dual Intel Xeon processor with Intel EM64T (3.6 GHz, 1 MB L2 cache, 4 GB
memory), Intel Cluster MKL 8.0.

Conclusion

The SciMark 2.0 benchmark was used to demonstrate that Intel programming tools can
dramatically improve application performance on Intel-based platforms with a minimum of
effort. The Intel C++ compiler for Linux improved the benchmark scores with no modification
of the original source code. Through relatively small source code modifications, the Intel
Math Kernel Library improved performance even further. The best single-node SciMark 2.0
performance for the small and large problem sizes is shown in Tables 12 and 13,
respectively. In nearly every instance the individual benchmark kernels also improve.
Consequently, composite scores improve for both problem sizes. The composite score for
the large problems improves dramatically because the full power of MKL can be brought to
bear on the FFT and LU kernels.

17



Benchmark Performance (MFLOPS) for Small Problems
GNU baseline Intel best Speedup
FFT 510 1817 3.6
SOR 524 1092 2.1
MC 206 10083 4.9
MV 857 832 1.0
LU 884 1827 2.1
Composite score | 596 1314 2.2

Table 12. The Intel C++ Compiler for Linux and Intel MKL significantly improve SciMark 2.0

performance relative to the GNU baseline for the small problem sizes.

Benchmark Performance (MFLOPS) for Large Problems
GNU baseline Intel best Speedup
FFT 45 600 13.3
SOR 495 1015 2.1
MC 206 1003 4.9
MV 453 457 1.0
LU 392 6646 16.9
Composite score | 318 1944 6.1

Table 13. The Intel C++ Gompiler for Linux and Intel MKL significantly improve SciMark 2.0
performance relative to the GNU baseline for the large problem sizes.

It is worth noting that many MKL functions are multithreaded so calling these functions
allows an application to take advantage of parallel computing. For example, multidimensional
DFT’s and most BLAS and LAPACK functions can use threads to solve large problems on
multiprocessor systems. In the case of the SciMark 2.0 LU and MV kernels, MKL creates
threads to take advantage of shared-memory parallelism. By modifying the MKL version of
the LU kernel to use Cluster MKL, it is possible to factor very large matrices on a cluster.

With a little more tuning effort it is likely that the performance of the SciMark 2.0 SOR kernel
can be improved even further. Perhaps restructuring some loops could improve the data

18



layout in memory and thus improve performance. The SOR algorithm is readily parallelizable
with OpenMP or MPI. However, this article illustrates that with minimal effort, significant
performance gains are possible using Intel software products.

References and Additional Resources

Intel® Software Network — This site contains a wealth of information for developers.
Numerous technical articles are available, e.g.:

e “Making the Monte Carlo Approach Even Easier and Faster”

e “Monte Carlo European Options Pricing Implementation Using Various Industry
Library Solutions”

e “Monte Carlo Simulations with MKL/VSL Random Number Generators” (soon to be
published)

Intel Software Network also has interactive forums that are hosted by Intel experts, e.g.:
e Intel Math Kernel Library
e Intel C++ Compiler
e Intel VTune Performance Analyzer for Linux
e HPC and Intel Cluster Tools
e Threading on Intel Parallel Architectures

Intel Software Development Products — Extensive product information and documentation is
available online or in the product packages, e.g.:

e Intel Math Kernel Library — Reference Manual
e Vector Statistical Library Notes

e Intel C++ Compiler for Linux User’s Guide

e (Getting Started with the Intel MPI Library

e Quick-Reference Guide to Optimization with Intel Compilers: A Step-by-Step
Approach to Application Tuning with the Intel Compilers

SciMark 2.0 Home Page — The benchmark source code plus additional information and
published results are available here.

LAPACK Users’ Guide (2" Edition), E. Anderson et al., Society for Industrial and Applied
Mathematics, 1995

Scal APACK Users’ Guide, L.S. Blackford et a/., Society for Industrial and Applied
Mathematics, 1997

OpenMP C and C++ Application Program Interface (version 2.0)

19


http://www.intel.com/software/
http://www.intel.com/cd/ids/developer/asmo-na/eng/95573.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/columns/61383.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/columns/61383.htm
http://softwareforums.intel.com/ids
http://www.intel.com/software/products
ftp://download.intel.com/software/products/mkl/docs/mklman.pdf
http://www.intel.com/software/products/mkl/docs/vslnotes.htm
ftp://download.intel.com/support/performancetools/c/linux/v8/c_ug_lnx.pdf
http://www.intel.com/software/products/cluster/mpi/
ftp://download.intel.com/software/products/compilers/docs/qr_guide.pdf
ftp://download.intel.com/software/products/compilers/docs/qr_guide.pdf
http://math.nist.gov/scimark2/index.html
http://www.openmp.org/drupal/mp-documents/cspec20.pdf

About the Authors

Henry Gabb is a Senior Staff Software Engineer in the Intel Parallel Applications Center
(Champaign, IL). He has been working on parallel applications and parallel performance
issues since he joined Intel in 2000. Henry holds a PhD in biochemistry and molecular
genetics from the University of Alabama at Birmingham School of Medicine. Prior to joining
Intel, Henry was Director of Scientific Computing at the U.S. Army Engineer Research and
Development Center MSRC, a DoD high-performance computing site.

Chirag Shah is a Software Engineer in the Application Design-In Center. He joined Intel in
2000 and has been involved in software optimizations and High Performance Computing
since 2003. Chirag holds a Masters in Electrical and Computer Engineering from Carnegie
Mellon University in Pittsburgh, PA.

20



Copyright © 2005 Intel Corporation. All rights reserved. Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantlP, Intel, Intel
Centrino, Intel Centrino logo, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,
Paragon, PDCharm, Pentium, Pentium Il Xeon, Pentium Il Xeon, Performance at Your Command, Sound Mark, The Computer Inside, The Journey Inside, VTune,
and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.




	Introduction 
	Using the Intel C++ Compiler for Linux to Improve Performance 
	Using the Intel Math Kernel Library (MKL) to Improve Performance 
	Tuning the FFT Kernel with the Intel MKL Discrete Fourier Transform API 
	Tuning the LU Kernel with the Intel MKL LAPACK Implementation 
	Parallelizing the LU Kernel for a Cluster 
	Tuning the MC Kernel with the MKL Vector Statistical Library and OpenMP 
	Tuning the MV Kernel Using the Intel MKL Sparse BLAS Capability 
	Conclusion 
	References and Additional Resources 
	About the Authors 




