
Optimizing SciMark* 2.0
 Using Intel® Software Products

 By Henry Gabb and Chirag G. Shah,
 Intel Corporation

 November, 2005

Optimizing the SciMark 2.0 Benchmark 11/1/2005

Performance tests and ratings are measured using specific computer systems and/or
components and reflect the approximate performance of Intel products as measured by
those tests. Any difference in system hardware or software design or configuration may
affect actual performance. Buyers should consult other sources of information to evaluate
the performance of systems or components they are considering purchasing. For more
information on performance tests and on the performance of Intel products, reference
[www.intel.com/software/products] or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED "AS
IS" WITH NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR
SAMPLE. INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS
DOCUMENT AND HAS NO LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES ARISING
FROM OR IN CONNECTION WITH THE USE OF THIS DOCUMENT.

Introduction
SciMark* 2.0 is a f loat ing-point benchmark from the National Inst i tute of Standards and

Technology. I t consists of f ive computat ional kernels:

1. FFT – performs a complex 1D fast Fourier transform

2. SOR – solves the Laplace equation in 2D by successive over-re laxation

3. MC – computes π by Monte Carlo integration

4. MV – performs sparse matr ix-vector mult ipl icat ion

5. LU – computes the LU factor izat ion of a dense N x N matr ix

These kernels represent the types of calculat ions that commonly occur in numerical ly-

intensive scient i f ic appl icat ions.

SciMark 2.0 is widely-used to measure CPU performance. As such, this benchmark is

important to Intel . Each kernel except MC has smal l and large problem sizes (Table 1). The

smal l problems are designed to test raw CPU performance and the effect iveness of the

cache hierarchy. The large problems stress the memory subsystem because they do not f i t

in cache. The MC kernel only uses scalars so there is no dist inct ion between the smal l and

large problems.

Prob lem S ize Benchmark

Smal l Large

FFT N = 1024 N = 1048576

SOR 100 x 100 1000 x 1000

MV N = 1000, NZ = 5000 N = 100000, NZ = 1000000

LU 100 x 100 1000 x 1000

Tab le 1 . Sma l l and l a rge p rob lem s i zes fo r the Sc iMa rk 2 .0 ke rne l s . No te tha t the re i s no

d i s t i nc t ion be tween sma l l and l a rge p rob lem s i zes fo r the MC ke rne l .

In order to measure the success of a software tuning project, i t is necessary to generate

basel ine performance data. Both Java* and ANSI C versions of SciMark 2.0 are avai lable.

The ANSI C version was used for the present study. Unless otherwise noted, the fol lowing

dual-processor server was used for al l performance measurements:

 1

http://math.nist.gov/scimark2/index.html

Hardware

CPU Intel® Xeon® Processor (3.6 GHz Xeon 2

MB L2 cache) with Intel® EM64T

Motherboard Intel Server Board SE7520AF2

Memory 512 MB DDR2

BIOS

Version P06

Adjacent Cache Line Prefetch ON

Hardware Prefetch ON

Hyper-Threading Technology OFF

Software

Operating system Red Hat Enterprise Linux* AS 3

Linux Kernel 2.4.21-20.EL #1 SMP

Intel® C++ Compiler for Linux 8.1 (l_cce_pc_8.1.024)

Intel® Cluster Math Kernel Library 7.2 (l_cluster_mkl_7.2.008)

GNU* C compiler gcc* 3.2.3

As the GNU C compiler is readi ly avai lable on Linux, gcc was used to set the performance

basel ine. Results are reported in mi l l ions of f loat ing-point operat ions per second (MFLOPS).

Thus, higher values indicate better performance. Al though exact performance is reported,

the SciMark 2.0 FAQ states that actual performance may vary by ±5%. However, the

observed performance var iat ions were general ly much smal ler than 5%.

 2

http://math.nist.gov/scimark2/faq.html

Per formance (MFLOPS) Benchmark

Smal l Large

FFT 149 36

SOR 401 393

MC 47 47

MV 213 211

LU 297 292

Compos i te score 221 196

Tab le 2 . The GNU C comp i l e r was used to gene ra te p re l im ina ry pe r fo rmance da ta fo r Sc iMa rk 2 .0

comp i l ed a t the de fau l t op t im i za t i on l eve l .

Table 2 displays SciMark 2.0 performance using the GNU C compiler at default optimizat ion.

However, the GNU C compiler is capable of more advanced optimizat ion so addit ional

compi ler opt ions (-O3 -march=nocona -f fast-math -mfpmath=sse) were used to set a more

real ist ic performance basel ine. Table 3 shows the best SciMark 2.0 performance achieved

with gcc during this study. These results wi l l be used as the performance basel ine to

measure tuning effect iveness.

Per formance (MFLOPS) Benchmark

Smal l Large

FFT 510 45

SOR 524 495

MC 206 206

MV 857 453

LU 884 392

Compos i te score 596 318

Tab le 3 . The GNU C comp i l e r w i th agg ress i ve op t im iza t i on was used to gene ra te base l i ne

pe r fo rmance da ta . Sc iMa rk 2 .0 was bu i l t w i th the fo l l ow ing comp i l e r op t ions :

-O3 -march=nocona -ffast-math -mfpmath=sse.

 3

Using the Intel C++ Compiler for Linux to Improve
Performance
I t is standard pract ice to submit results for unmodif ied benchmarks in order to make direct

comparisons between results and to keep an even playing f ie ld between competitors.

Therefore, before examining source code modif icat ions that could potential ly improve

performance, SciMark 2.0 was simply recompiled with the Intel C++ Compiler for Linux. The

Intel compilers are designed to take maximum advantage of Intel processor architecture so

some performance improvement is expected over the GNU compiler, which is designed for

general i ty rather than maximum performance. As such, recompi l ing SciMark 2.0 with the

Intel compiler at default optimizat ion improves the benchmark composite score relat ive to

the GNU basel ine as shown in Table 4. Simi lar results were obtained for the large problem

sizes, as shown in Table 5.

Per formance (MFLOPS) for Smal l P rob lems Benchmark

GNU base l ine In te l base l ine Speedup

FFT 510 512 1.0

SOR 524 759 1.4

MC 206 153 0.7

MV 857 883 1.0

LU 884 1282 1.4

Compos i te score 596 718 1.2

Tab le 4 . The In te l C++ Comp i l e r fo r L inux a t the de fau l t op t im i za t ion l eve l imp roves the

benchmark compos i te sco re re l a t i ve to the GNU base l i ne fo r the sma l l p rob lem s i zes .

 4

Per formance (MFLOPS) for Large P rob lems Benchmark

GNU base l ine In te l base l ine Speedup

FFT 45 45 1.0

SOR 495 720 1.5

MC 206 153 0.7

MV 453 455 1.0

LU 392 402 1.0

Compos i te score 318 355 1.1

Tab le 5 . The In te l C++ Comp i l e r fo r L inux a t the de fau l t op t im i za t ion l eve l imp roves the

benchmark compos i te sco re re l a t i ve to the GNU base l i ne fo r the l a rge p rob lem s i zes .

Though default optimizat ion yields good results, more aggressive optimizat ion can improve

performance even further. The -fast option encompasses several common compiler

optimizations: -O3, -xP, -ipo. The -O3 opt ion enables the default optimizat ions

plus other optimizat ions designed to improve the performance of f loat ing-point- intensive

loops. The Intel compilers also have options to opt imize for specif ic Intel processor famil ies.

The -xP f lag tel ls the compiler to generate a binary tuned specif ical ly for Intel processors

that support Streaming SIMD Extensions 3 (SSE3) instruct ions. The -ipo option enables

interprocedural optimizat ions such as in l ine function expansion.

By defaul t, the Inte l compilers conservat ively assume that some memory locat ions are

al iased and are referenced by more than one var iable. This dependency prevents the

compi ler from performing some optimizations. The SciMark 2.0 source code does not

contain al iased memory locat ions so the -fno-alias f lag was also used. (I t is worth

noting that improper use of the -fno-alias f lag can result in incorrect calculat ions.)

Aggressive optimizat ion with the Intel C++ compiler resulted in signif icant ly greater

performance relat ive to the GNU basel ine for both the smal l , as shown in Table 6, and the

large problem sizes, as shown in Table 7. The Intel compiler doubles the performance of

some kernels.

 5

Per formance (MFLOPS) for Smal l P rob lems Benchmark

GNU base l ine In te l opt im ized Speedup

FFT 510 521 1.0

SOR 524 1092 2.1

MC 206 447 2.2

MV 857 832 1.0

LU 884 1827 2.1

Compos i te score 596 943 1.6

Tab le 6 . The I n te l C++ Comp i l e r fo r L i nux us i ng t he “-fast -fno-alias” op t im i za t i on f l ags

s ign i f i can t l y imp roves the benchmark compos i te sco re re l a t i ve to the GNU base l i ne fo r the sma l l

p rob lem s i zes . Pe r fo rmance i s a l so s ign i f i can t l y improved fo r th ree o f t he f i ve ke rne l s .

Per formance (MFLOPS) for Large P rob lems Benchmark

GNU base l ine In te l compi le r Speedup

FFT 45 45 1.0

SOR 495 1015 2.1

MC 206 447 2.2

MV 453 457 1.0

LU 392 389 1.0

Compos i te score 318 389 1.2

Tab le 7 . The I n te l C++ Comp i l e r fo r L i nux us i ng t he “-fast -fno-alias” op t im i za t i on f l ags

fu r t he r imp roves the benchmark compos i t e sco re re l a t i ve to the GNU base l i ne fo r t he l a rge

p rob lem s i zes .

Performance is also signi f icantly improved for two of the f ive kernels.

 6

Using the Intel Math Kernel Library (MKL) to Improve
Performance
Most benchmark code is designed for portabi l i ty rather than maximum performance on a

part icular platform. However, opt imized numerical l ibrar ies are readi ly avai lable for most

platforms. I t is standard pract ice to use numerical l ibrar ies for common mathematical

operations. For example, the Basic Linear Algebra Subprograms (BLAS) and the Linear

Algebra Package (LAPACK) provide standard interfaces to many l inear algebra functions.

Fourier transform l ibrar ies are also avai lable.

Intel® Math Kernel Library (Intel® MKL) contains highly optimized BLAS, LAPACK, and

Fourier transform implementat ions. I t also contains two vector l ibrar ies for random number

generat ion and transcendental funct ions. These capabi l i t ies are directly appl icable to the

SciMark 2.0 FFT, MC, MV, and LU kernels. Many Intel MKL functions are also threaded to

take advantage of mult iprocessor systems l ike the one used in this study. The compiler- level

tuning described in the previous section did not modify the or iginal benchmark source code.

That constraint is now removed to accommodate MKL.

Tuning the FFT Kernel with the Intel MKL Discrete Fourier
Transform API
The fast Fourier transform is a wel l-studied algor ithm that is used in a wide variety of

appl icat ions. Developers can often choose from several off-the-shelf discrete Fourier

transform (DFT) l ibrar ies. Unl ike l inear algebra, however, there are no standard cal l ing

conventions for DFT funct ions. Replacing the hand-coded transform in the SciMark 2.0 FFT

kernel therefore requires some code modif icat ion in order to use Intel MKL.

Rather than attempting to provide a unique function for every DFT permutation, Intel MKL

uses a general-purpose API. Developers describe the desired transform to Intel MKL before

in it iat ing the computation. For example, the SciMark 2.0 FFT kernel computes a complex 1D

forward-backward transform on an array of 1024 numbers. With Intel MKL, the developer

creates a descriptor of th is transform as shown in the fol lowing code.

#include <mkl.h>

int N = 1024;
long status;
double *x = RandomVector ((2 * N), R);
double scale = 1.0 / (double)N;
DFTI_DESCRIPTOR *dftiHandle;

status = DftiCreateDescriptor (&dftiHandle, DFTI_DOUBLE, DFTI_COMPLEX, 1, N);
status = DftiSetValue (dftiHandle, DFTI_BACKWARD_SCALE, scale);
status = DftiCommitDescriptor (dftiHandle);

status = DftiComputeForward (dftiHandle, x);
status = DftiComputeBackward (dftiHandle, x);

status = DftiFreeDescriptor (&dftiHandle);

 7

The cal l to DftiCreateDescriptor al locates and init ia l izes a descriptor for a double

precision, complex 1D DFT of size N = 1024. (Note that the transform array is dimensioned

to 2048 to accommodate the real and imaginary parts of each complex number.)

DftiSetValue appl ies the specif ied scal ing factor to the backward transform.

DftiCommitDescriptor does what i ts name impl ies. dftiHandle can now be used to

transform any array that is consistent with the descriptor. DftiComputeForward and

DftiComputeBackward perform the actual forward and backward transforms on the array

using the suppl ied descr iptor. Descriptors can be reused, but when they are no longer

needed, DftiFreeDescriptor f rees the memory al located to hold the descriptor. This

versati le API al lows developers to describe and compute a wide variety of DFT’s. I t is a lso

much easier than try ing to remember the name and prototype of numerous functions that

compute a specif ic type of DFT.

Replacing the hand-coded DFT in the SciMark 2.0 FFT kernel with MKL gives a signif icant

speedup over basel ine performance (Table 8). I t is worth noting that on mult iprocessor

systems, Intel MKL automatical ly computes mult idimensional DFT’s in paral le l .

Per formance (MFLOPS) FFT Benchmark

GNU base l ine MKL Speedup

Smal l problem (N = 1024) 510 1817 3.6

Large problem (N = 1048576) 45 600 13.3

Tab le 8 . Rep lac ing the hand-coded t rans fo rm in the Sc iMa rk 2 .0 FFT ke rne l w i th I n te l MKL

s ign i f i can t l y imp roves pe r fo rmance .

Tuning the LU Kernel with the Intel MKL LAPACK
Implementation
Like the Fourier transform, LU factor izat ion is another common mathematical operation. The

MKL LAPACK implementat ion contains a sui table funct ion for the SciMark 2.0 LU kernel.

Specif ical ly, the dgetrf funct ion computes the LU factor izat ion of a general , double

precision M x N matr ix. Replacing the hand-coded LU factor izat ion function in SciMark 2.0

with dgetrf requires attention to some important detai ls because SciMark 2.0 is wri t ten in

C whereas LAPACK only def ines a Fortran interface.

 8

Syntax
call dgetrf (m, n, A, lda, ipiv, info)

Input Parameters
m INTEGER Number of rows in matrix A (m >= 0)
n INTEGER Number of columns in matrix A (n >= 0)
A DOUBLE PRECISION

DIMENSION (lda,*)
Input matrix

lda INTEGER First dimension of A

Output Parameters
A Overwritten by L and U
ipiv INTEGER

DIMENSION MAX(1, MIN(m,n))
Pivot indices

info INTEGER Error code

Fortran is cal l-by-reference whi le C is cal l-by-value. The fol lowing funct ion cal l adheres to

Fortran cal l ing conventions:

 dgetrf (&N, &N, A, &N, pivot, &error);

Arrays in C are often al located as pointers-to-pointers, which are not necessar i ly contiguous

in memory. Much better performance is possible with contiguous data so the C interface to

dgetrf expects a vector. Final ly, Fortran uses column-major ordering for arrays but C uses

row-major ordering. The data suppl ied to dgetrf must be in column-major order to get

correct results.

This attention to detai l pays of f because the Intel MKL LU factorizat ion signif icantly improved

performance for the large problem, as shown in Table 9. Paral le l ism is an added bonus that

improves performance even further. Though Intel MKL performance for the smal l problem is

good, i t is s l ight ly worse than the best performance achieved by the Intel compiler. A

problem this smal l does not merit the LAPACK overhead. Simi lar ly, a 100 x 100 LU

factorization is too smal l to benef i t from mult i threading.

LU Benchmark Per formance (MFLOPS)

 GNU base l ine MKL Speedup

 1- th read 2- th reads 1- th read 2- th reads

Small problem 884 1680 N/A 1.9 N/A

Large problem 392 3837 6646 9.8 16.9

Tab le 9 . Rep lac ing the hand-coded LU fac to r i za t i on i n the Sc iMa rk 2 .0 LU ke rne l w i th I n te l MKL

s ign i f i can t l y imp roves pe r fo rmance fo r the l a rge p rob lem.

Note: mult i threading does not help the smal l problem because there is not enough work in a

100 x 100 LU factorizat ion to meri t thread creation.

 9

Parallelizing the LU Kernel for a Cluster
In addit ion to thread-level paral le l ism, there is yet another advantage to using the Intel MKL

LAPACK implementat ion. Namely, Intel Cluster MKL supports the distr ibuted-memory paral le l

version of LAPACK cal led ScaLAPACK (Scalable LAPACK). Even though the large LU

problem in SciMark 2.0 is far too smal l to merit solut ion on a cluster, a ScaLAPACK

implementat ion is presented here to show that with a few adjustments, the Intel MKL version

of the LU kernel can solve much larger problems. These adjustments can be summarized in

four steps:

1. In it ia l ize the process grid

2. Create a descriptor for each matr ix that wi l l be distr ibuted across the process gr id

3. Replace the cal l to dgetrf with pdgetrf (the ‘p’ is for paral le l)

4. Release the process gr id.

The ScaLAPACK SL_INIT routine creates a vi rtual process gr id on which the computation wi l l

be performed. This also al lows each process to f ind i ts locat ion in the process gr id and

determine i ts sub-domain of the global computation. ScaLAPACK scales wel l because both

data and work are div ided across mult iple processes, which run in paral le l on dif ferent

processors.

The developer creates a descriptor for each matr ix involved in the computation. The

descriptor is simply an array that contains such information as the matr ix type (e.g., dense

or banded), the handle for the process gr id, the tota l number of rows and columns in the

global matr ix, the blocking factor (discussed below), the process holding the f i rst row and

column of the global matr ix, and the leading dimension of the local sub-matr ix. These

descriptors determine how Intel Cluster MKL distr ibutes across the process grid. Only one

matr ix descriptor is needed for LU factor izat ion.

In ScaLAPACK, matr ices are distr ibuted in block-cycl ic fashion (Figure 1). The block size

speci f ied in the matr ix descriptor great ly affects overal l paral le l performance. There are no

hard-and-fast rules for sett ing block size but, in general, a large block size minimizes

communicat ion overhead at the expense of load balance. Conversely, a smal l block size

improves load balance but increases communicat ion between the processes. This tradeoff is

i l lustrated in Figure 1 for a lower-tr iangular matr ix. In the lef tmost diagram in Figure 1, not ice

that process-0 has signi f icantly more of the matr ix than process-3. The r ightmost 2D block-

cycl ic distr ibut ion is a def in ite improvement over a simple 1D block distr ibut ion. However,

communication is required along each process boundary. Comparing the two 2D block-cycl ic

distr ibut ions shown in Figure 1, i t is clear that the r ightmost diagram has better load balance

but higher communication overhead.

 10

Figure 1: ScaLAPACK uses block-cycl ic data distr ibut ion to improve load balance.

Once the global matr ix is properly distr ibuted, the work can be distr ibuted by replacing the

cal l to dgetrf (described in the previous section) with a cal l to i ts paral le l counterpart:

 pdgetrf_ (&global_rows, // Number of rows in the global matrix
 &global_cols, // Number of columns in the global matrix
 A, // Local sub-domain of global matrix
 &one,
 &one,
 descA, // Descriptor for global matrix
 pivot,
 &error);

Comments highl ight the key arguments that di f ferentiate pdgetrf from dgetrf . I t is

important to note that the LU matr ix is now spread across mult iple processes. The matr ix

argument suppl ied to pdgetrf is actual ly a sub-matr ix local to the cal l ing process. Instead

of al locat ing memory for the ent i re LU matr ix, the processes need only al locate enough

memory for their respective sub-domains. ScaLAPACK can harness the memory of an entire

cluster to solve l inear algebra problems too large for a single computer.

Intel Cluster MKL makes i t possible to perform the LU factorizat ion on a 40000 x 40000

matr ix using a smal l cluster [8 dual-3.0 GHz Intel Xeon processors (512 KB L2 cache nodes

and 2 GB memory per node) connected via Gigabit Ethernet and Inf iniBand*] in a few

minutes (approximately 42000 MFLOPS using Gigabit Ethernet and 46000 MFLOPS using

Inf iniBand). The Inte l MPI Library 1.0 was used as the underlying communication layer

because it is fabric- independent. A double precision array of this size requires approximately

12 GB memory. Few computers have this much memory so a slow, out-of-core solut ion

would normal ly be required to solve a problem this large. I f more compute nodes, and

hence, more memory, are added to the cluster, i t is possible to solve even larger problems.

The previous discussion omits many detai ls for the sake of brevity and only hints at the

power and f lexibi l i ty of ScaLAPACK. The reader is referred to the ScaLAPACK User’s Guide

and the Intel Math Kernel L ibrary – Reference Manual for more detai led examples of solving

large l inear a lgebra problems.

0 1

3 2

0 1

3 2

0 1

3 2

0 1

3 2

2D block-
cyclic

distribution

0 1 2 3 0 1 2 3 0 1 2 3

2D block-
cyclic

distribution

1D block
distribution

1D block-
cyclic

distribution

Load balance
Poor Better

 11

http://www.netlib.org/scalapack/slug/index.html
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/219843.htm

Tuning the MC Kernel with the MKL Vector Statistical Library
and OpenMP
Simulat ion methods and stochastic algori thms require a set of randomly determined ini t ia l

condit ions or a continuous stream of random numbers. Because random number generat ion

is such a common feature in computational methods, the Intel MKL Vector Stat ist ical Library

(VSL) provides optimized random number generators for common probabi l i ty distr ibut ions:

uniform, Gaussian, exponential , Poisson, etc. The basic random number generators can be

used to generate non-uniform distr ibut ions. Users can also register their own random

number generators with VSL.

VSL functions return vectors of random numbers because algorithms that use random

number generat ion usual ly need many random numbers instead of just one. Also, vector

functions give better performance than scalar random number generators.

The SciMark 2.0 MC kernel calculates π by randomly sampl ing points in a unit square and

determining whether these points fal l within the upper-r ight quadrant of a unit ci rcle

inscribing the square:

double MonteCarlo_integrate (int Num_samples)
{
 int under_curve = 0;
 int count;

 Random R = new_Random_seed (SEED);
 for (count = 0; count < Num_samples; count++)
 {
 double x = Random_nextDouble ®;
 double y = Random_nextDouble ®;

 if (x*x + y*y <= 1.0) under_curve++;
 }
 Random_delete ®;

 return ((double) under_curve / Num_samples) * 4.0;
}

The fol lowing steps are used to implement VSL in the SciMark 2.0 MC kernel:

1. For eff ic iency, VSL provides a vector of random numbers. Creating a vector for the

ent ire stream is impract ical because Num_samples may be too large. Therefore, a

stat ic array of def ined size is used to hold blocks of the random number stream.

2. A random number stream of type VSLStreamStatePtr is in i t ia l ized with a cal l to

vslNewStream , speci fy ing which basic random number generator and seed to use.

3. Next, the cal l to vdRngUniform puts a uniform distr ibut ion of (2 * BLOCK_SIZE)

double precision random numbers of range [0.0 to 1.0] into the array rnBuf .

4. The random numbers are used in the π calculat ion.

5. The cal l to vslDeleteStream deletes the random number stream when it is no

longer needed.

 12

#include <mkl.h>

double MonteCarlo_integrate (int Num_samples)
{
 int under_curve = 0;

 int i, j, blocks, tail;
 static double rnBuf[2 * BLOCK_SIZE];
 double rnX, rnY;
 VSLStreamStatePtr stream;

 blocks = Num_samples / BLOCK_SIZE;
 tail = Num_samples - blocks * BLOCK_SIZE;

 vslNewStream (&stream, VSL_BRNG_MCG31, SEED);

 for (i = 0; i < blocks; i++)
 {
 vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,
 (2 * BLOCK_SIZE), rnBuf, 0.0, 1.0);

 for (j = 0; j < BLOCK_SIZE; j++)
 {
 rnX = rnBuf[2*j];
 rnY = rnBuf[2*j+1];
 if (rnX*rnX + rnY*rnY <= 1.0) under_curve++;
 }
 }

 vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream, (2 * tail), rnBuf, 0.0, 1.0);

 for (j = 0; j < tail; j++)
 {
 rnX = rnBuf[2*j];
 rnY = rnBuf[2*j+1];
 if (rnX*rnX + rnY*rnY <= 1.0) under_curve++;
 }

 vslDeleteStream (&stream);
 return ((double) under_curve / Num_samples) * 4.0;
}

The underlying MC algori thm has not been changed in the VSL implementat ion. Scalar

random number generat ion has simply been replaced by a vector approach, result ing in a

signif icant performance improvement, as shown in Table 10.

The MC algorithm is natural ly paral le l . Each random sample is independent of every other

sample. VSL functions are threadsafe so they can be used for paral le l random number

generat ion. After the in i t ia l VSL implementat ion, OpenMP is used to paral le l ize the MC

kernel. OpenMP is a portable standard that i t is easy-to-use and supported by the Intel

compilers. The VSL/OpenMP version of the SciMark 2.0 MC kernel is shown below:

 13

 nThreads = maxThreads = omp_get_max_threads ();
 omp_set_num_threads (nThreads);

 vslNewStream (&streamX, VSL_BRNG_MCG31, SEED);
 vslCopyStream (&streamY, streamX);
 vslLeapfrogStream (streamX, 0, 2);
 vslLeapfrogStream (streamY, 1, 2);

 streamXThread = (VSLStreamStatePtr) malloc (nThreads *
 sizeof (VSLStreamStatePtr));
 streamYThread = (VSLStreamStatePtr) malloc (nThreads *
 sizeof (VSLStreamStatePtr));

 for (i = 0; i < nThreads; i++)
 {
 vslCopyStream (&(streamXThread[i]), streamX);
 vslCopyStream (&(streamYThread[i]), streamY);
 vslSkipAheadStream (streamX, BLOCK_SIZE);
 vslSkipAheadStream (streamY, BLOCK_SIZE);
 }

 #pragma omp parallel for \
 reduction (+:under_curve) \
 private (i, j, rnX, rnY, threadID, thread_under_curve, rnBufX, rnBufY)
 for (i = 0; i < blocks; i++)
 {
 threadID = omp_get_thread_num ();

 vdRngUniform (VSL_METHOD_DUNIFORM_STD, streamXThread[threadID],
 BLOCK_SIZE, rnBufX, 0.0, 1.0);
 vdRngUniform (VSL_METHOD_DUNIFORM_STD, streamYThread[threadID],
 BLOCK_SIZE, rnBufY, 0.0, 1.0);

 thread_under_curve = 0.0;

 for (j = 0; j < BLOCK_SIZE; j++)
 {
 rnX = rnBufX[j];
 rnY = rnBufY[j];
 if (rnX*rnX + rnY*rnY <= 1.0) thread_under_curve++;
 }
 under_curve += thread_under_curve;

 #pragma omp critical
 {
 vslCopyStreamState (streamXThread[threadID], streamX);
 vslCopyStreamState (streamYThread[threadID], streamY);
 vslSkipAheadStream (streamX, BLOCK_SIZE);
 vslSkipAheadStream (streamY, BLOCK_SIZE);
 } // End OpenMP critical section
 } // End OpenMP parallel loop

Addit ional code modif icat ions and VSL funct ions are needed to generate a reproducible

random number stream. First, each thread creates i ts own copy of the random number

stream with vslCopyStream . The cal l to vslSkipAheadStream ensures that their random

number sequences do no overlap. The OpenMP “parallel for” pragma creates threads

and executes the next for- loop in paral le l . The OpenMP private clause creates thread-

private copies of the specif ied var iables. The OpenMP “reduction (+:under_curve)”

clause creates a pr ivate copy of under_curve for each thread and then sums the values

from each thread at the end of the paral le l computat ion.

 14

There is a certa in amount of system overhead associated with mult i threading. Before

creating threads, the programmer must ask, “Does the amount of computat ion meri t thread

creat ion?” For example, the trai l ing loop is too smal l to bother paral le l iz ing. Most of the work

is in the leading loop. The MC kernel steadi ly increases the number of random samples used

to calculate π unti l the t imer resolut ion threshold is reached. To avoid tr ipping this threshold

when the number of samples is too smal l to ef fect ively use mult iple threads, the number of

samples is set to 268,435,456 for the OpenMP tests. This is the value at which the serial

VSL implementat ion reaches the t imer resolut ion threshold on the test system. Taking

advantage of both processors in the test system improves MC performance, as shown below

in Table 10.

MC Benchmark Per formance (MFLOPS) Speedup

GNU basel ine 206

Intel compiler only 447 2.2

Intel compiler + VSL 699 3.4

Intel compiler + VSL + OpenMP 1003 4.9

Tab le 10 . Rep lac ing the sca la r random numbe r gene ra to r w i th a vec to r r andom numbe r gene ra to r

i n the In te l MKL VSL and emp loy i ng mu l t ip l e t h reads imp roves pe r fo rmance o f t he Sc iMa rk 2 .0

MC ke rne l re l a t i ve to the GNU base l i ne .

Tuning the MV Kernel Using the Intel MKL Sparse BLAS
Capability
Matr ix-vector mult ipl icat ion is such a common operation that i t is def ined in BLAS. For

example, the dgemv funct ion performs a double precision, matr ix-vector product. Standard

BLAS functions are designed with dense matr ices in mind but the SciMark 2.0 MV kernel

uses a sparse matr ix, in which the major i ty of elements are zeros. One could treat a sparse

matr ix as a dense matr ix and simply use a standard BLAS routine, but this is wasteful in

terms of storage and computation. The large MV problem uses a 100,000 x 100,000 double

precision matr ix with only 1,000,000 nonzero elements. A dense matr ix representat ion would

require approximately 75 GB of memory.

Sparse matr ices are common in technical computing so many compressed storage schemes

have been devised. These schemes typical ly store only the nonzero matr ix e lements and

their locations in the original 2D context. The SciMark 2.0 MV kernel uses a compressed

sparse row (CSR) format consist ing of three arrays: one to store the nonzero values, one to

store the column index of each nonzero value, and one containing the index into the values

array for the f i rst nonzero element of each row. The fol lowing example f rom the MKL

documentation i l lustrates the CSR format.

 15

⎟
⎠
⎞

⎜
⎝
⎛= 16

8
5

2
1

2
13

4
36

2
39values

()543254321=columns

160000

0
8
5000

00
2
100

000
2
10

3
4
36

2
39

()1098761=rowIndex

The size of the values and column index arrays is equal to the number of nonzero elements.

The size of the row index array is equal to the number of rows plus one. Therefore, the

sparse representat ion of the MV large matr ix requires only 16 MB of memory compared to 75

GB for the dense representat ion.

Fortunately, Intel MKL supports the CSR format so very l i t t le code modif icat ion is necessary

to use the corresponding Intel MKL sparse BLAS rout ine. First, i t is necessary to include the

mkl_spblas.h header. Second, the Intel MKL sparse storage scheme starts array indices

at one rather than zero so the values in the MV row and column index arrays must be

incremented by one. Final ly, the Intel MKL sparse BLAS function mkl_dcsrgemv is cal led to

compute a double precision, sparse matr ix-vector mult ipl icat ion in CSR format.

In general, BLAS is used for large computations because of the overhead incurred. The MV

smal l and large problems are too smal l to merit the overhead of BLAS. For such smal l

problems, the mkl_dcsrgemv function actual ly degrades performance relat ive to the GNU

and Intel compiler basel ines (Tables 6 and 7). However, even the large MV problem, which

only requires 16 MB of memory, could be considered smal l when most modern workstations

measure memory in gigabytes.

A problem size of N = 1,600,000 and NZ = 250,000,000 takes advantage of a 64-bit address

space and amort izes the normal BLAS startup costs whi le keeping the same degree of

sparseness as the or iginal large MV problem. The mkl_dcsrgemv function performs about

as wel l as the GNU and Intel compilers but i t has an important advantage – i t is already

threaded, as shown in Table 11.

 16

Ext ra- la rge MV prob lem Per formance (MFLOPS) Speedup

GNU compiler 183

Intel compiler 181 1.0

Intel compiler + MKL 177 1.0

Intel compiler + MKL + OpenMP 362 2.0

Tab le 11 . Rep lac ing the hand-coded spa rse ma t r i x -vec to r mu l t i p l i ca t ion i n t he Sc iMa rk 2 .0 MV

ke rne l w i th I n te l MKL and enab l i ng mu l t i t h read ing imp roves pe r fo rmance .

Note: a di f ferent system was used to generate this performance data. The dif ferences are as

fol lows: dual Inte l Xeon processor with Intel EM64T (3.6 GHz, 1 MB L2 cache, 4 GB

memory), Intel Cluster MKL 8.0.

Conclusion
The SciMark 2.0 benchmark was used to demonstrate that Intel programming tools can

dramatical ly improve appl icat ion performance on Intel-based platforms with a minimum of

effort. The Intel C++ compiler for Linux improved the benchmark scores with no modif icat ion

of the or iginal source code. Through relat ively smal l source code modif icat ions, the Intel

Math Kernel Library improved performance even further. The best single-node SciMark 2.0

performance for the smal l and large problem sizes is shown in Tables 12 and 13,

respectively. In nearly every instance the individual benchmark kernels also improve.

Consequently, composite scores improve for both problem sizes. The composite score for

the large problems improves dramatical ly because the ful l power of MKL can be brought to

bear on the FFT and LU kernels.

 17

Per formance (MFLOPS) for Smal l P rob lems Benchmark

GNU base l ine In te l best Speedup

FFT 510 1817 3.6

SOR 524 1092 2.1

MC 206 1003 4.9

MV 857 832 1.0

LU 884 1827 2.1

Compos i te score 596 1314 2.2

Tab le 12 . The I n te l C++ Comp i l e r f o r L i nux and I n te l MKL s ign i f i can t l y imp rove Sc iMa rk 2 .0

pe r fo rmance re l a t i ve to the GNU base l i ne fo r the sma l l p rob lem s i zes .

Per formance (MFLOPS) for Large P rob lems Benchmark

GNU base l ine In te l best Speedup

FFT 45 600 13.3

SOR 495 1015 2.1

MC 206 1003 4.9

MV 453 457 1.0

LU 392 6646 16.9

Compos i te score 318 1944 6.1

Tab le 13 . The I n te l C++ Comp i l e r f o r L i nux and I n te l MKL s ign i f i can t l y imp rove Sc iMa rk 2 .0

pe r fo rmance re la t i ve to t he GNU base l i ne fo r t he l a rge p rob lem s i zes .

I t is worth noting that many MKL functions are mult i threaded so cal l ing these functions

al lows an appl ication to take advantage of paral le l computing. For example, mult idimensional

DFT’s and most BLAS and LAPACK functions can use threads to solve large problems on

mult iprocessor systems. In the case of the SciMark 2.0 LU and MV kernels, MKL creates

threads to take advantage of shared-memory paral le l ism. By modifying the MKL version of

the LU kernel to use Cluster MKL, i t is possible to factor very large matr ices on a cluster.

With a l i t t le more tuning effort i t is l ikely that the performance of the SciMark 2.0 SOR kernel

can be improved even further. Perhaps restructuring some loops could improve the data

 18

layout in memory and thus improve performance. The SOR algorithm is readi ly paral le l izable

with OpenMP or MPI. However, this art ic le i l lustrates that with minimal effort, s ignif icant

performance gains are possible using Intel software products.

References and Additional Resources
In te l® Sof tware Network – This si te contains a wealth of information for developers.

Numerous technical art ic les are avai lable, e.g.:

• “Making the Monte Carlo Approach Even Easier and Faster”

• “Monte Carlo European Options Pricing Implementat ion Using Various Industry

Library Solut ions”

• “Monte Carlo Simulat ions with MKL/VSL Random Number Generators” (soon to be

publ ished)

Intel Software Network also has interactive forums that are hosted by Intel experts, e.g.:

• Intel Math Kernel Library

• Intel C++ Compiler

• Intel VTune Performance Analyzer for Linux

• HPC and Intel Cluster Tools

• Threading on Inte l Paral le l Architectures

Intel Software Development Products – Extensive product information and documentation is

avai lable onl ine or in the product packages, e.g.:

• Intel Math Kernel Library – Reference Manual

• Vector Stat ist ical Library Notes

• Intel C++ Compiler for Linux User’s Guide

• Getting Started with the Intel MPI Library

• Quick-Reference Guide to Optimizat ion with Intel Compilers: A Step-by-Step

Approach to Appl ication Tuning with the Intel Compilers

Sc iMark 2.0 Home Page – The benchmark source code plus addit ional information and

publ ished results are avai lable here.

LAPACK Users ’ Gu ide (2 n d Ed i t i on) , E. Anderson et al. , Society for Industr ia l and Appl ied

Mathematics, 1995

ScaLAPACK Users ’ Gu ide , L.S. Blackford et al . , Society for Industr ia l and Appl ied

Mathematics, 1997

OpenMP C and C++ Appl icat ion Program Interface (version 2.0)

 19

http://www.intel.com/software/
http://www.intel.com/cd/ids/developer/asmo-na/eng/95573.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/columns/61383.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/columns/61383.htm
http://softwareforums.intel.com/ids
http://www.intel.com/software/products
ftp://download.intel.com/software/products/mkl/docs/mklman.pdf
http://www.intel.com/software/products/mkl/docs/vslnotes.htm
ftp://download.intel.com/support/performancetools/c/linux/v8/c_ug_lnx.pdf
http://www.intel.com/software/products/cluster/mpi/
ftp://download.intel.com/software/products/compilers/docs/qr_guide.pdf
ftp://download.intel.com/software/products/compilers/docs/qr_guide.pdf
http://math.nist.gov/scimark2/index.html
http://www.openmp.org/drupal/mp-documents/cspec20.pdf

About the Authors
Henry Gabb is a Senior Staff Software Engineer in the Inte l Paral le l Appl icat ions Center

(Champaign, IL). He has been working on paral le l appl icat ions and paral le l performance

issues since he joined Intel in 2000. Henry holds a PhD in biochemistry and molecular

genetics from the University of Alabama at Birmingham School of Medicine. Pr ior to joining

Intel , Henry was Director of Scienti f ic Computing at the U.S. Army Engineer Research and

Development Center MSRC, a DoD high-performance computing si te.

Chirag Shah is a Software Engineer in the Appl ication Design-In Center. He joined Intel in

2000 and has been involved in software optimizat ions and High Performance Computing

since 2003. Chirag holds a Masters in Electr ical and Computer Engineering from Carnegie

Mel lon Universi ty in Pittsburgh, PA.

 20

Copyright © 2005 Intel Corporation. All rights reserved. Celeron, Chips, Dialogic, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel
Centrino, Intel Centrino logo, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,
Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, Sound Mark, The Computer Inside, The Journey Inside, VTune,
and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

	Introduction
	Using the Intel C++ Compiler for Linux to Improve Performance
	Using the Intel Math Kernel Library (MKL) to Improve Performance
	Tuning the FFT Kernel with the Intel MKL Discrete Fourier Transform API
	Tuning the LU Kernel with the Intel MKL LAPACK Implementation
	Parallelizing the LU Kernel for a Cluster
	Tuning the MC Kernel with the MKL Vector Statistical Library and OpenMP
	Tuning the MV Kernel Using the Intel MKL Sparse BLAS Capability
	Conclusion
	References and Additional Resources
	About the Authors

