
Optimizing SciMark* 2.0
   Using Intel® Software Products

         
         By Henry Gabb and Chirag G. Shah, 
         Intel Corporation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   November, 2005



Optimizing the SciMark 2.0 Benchmark                                                           11/1/2005 

Performance tests and ratings are measured using specific computer systems and/or 
components and reflect the approximate performance of Intel products as measured by 
those tests.  Any difference in system hardware or software design or configuration may 
affect actual performance.  Buyers should consult other sources of information to evaluate 
the performance of systems or components they are considering purchasing.   For more 
information on performance tests and on the performance of Intel products, reference 
[www.intel.com/software/products] or call (U.S.) 1-800-628-8686 or 1-916-356-3104. 

THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED "AS 
IS" WITH NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY 
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR 
SAMPLE.  INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS 
DOCUMENT AND HAS NO LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES ARISING 
FROM OR IN CONNECTION WITH THE USE OF THIS DOCUMENT. 

   



 

Introduction 
SciMark* 2.0 is a f loat ing-point benchmark from the National Inst i tute of Standards and 

Technology. I t  consists of f ive computat ional kernels: 

1.  FFT – performs a complex 1D fast Fourier transform 

2.  SOR – solves the Laplace equation in 2D by successive over-re laxation 

3.  MC – computes π by Monte Carlo integration 

4.  MV – performs sparse matr ix-vector mult ipl icat ion 

5.  LU – computes the LU factor izat ion of a dense N x N matr ix 

These kernels represent the types of calculat ions that commonly occur in numerical ly-

intensive scient i f ic appl icat ions. 

SciMark 2.0 is widely-used to measure CPU performance. As such, this benchmark is 

important to Intel .  Each kernel except MC has smal l  and large problem sizes (Table 1). The 

smal l  problems are designed to test raw CPU performance and the effect iveness of the 

cache hierarchy. The large problems stress the memory subsystem because they do not f i t  

in cache. The MC kernel only uses scalars so there is no dist inct ion between the smal l  and 

large problems. 

 

Prob lem S ize  Benchmark  

Smal l  Large 

FFT N = 1024 N = 1048576 

SOR 100 x 100 1000 x 1000 

MV N = 1000, NZ = 5000 N = 100000, NZ = 1000000 

LU 100 x 100 1000 x 1000 

Tab le  1 .  Sma l l  and  l a rge  p rob lem s i zes  fo r  the  Sc iMa rk  2 .0  ke rne l s .  No te  tha t  the re  i s  no  

d i s t i nc t ion  be tween  sma l l  and  l a rge  p rob lem s i zes  fo r  the  MC ke rne l .  

In order to measure the success of a software tuning project, i t  is necessary to generate 

basel ine performance data. Both Java* and ANSI C versions of SciMark 2.0 are avai lable.  

The ANSI C version was used for the present study. Unless otherwise noted, the fol lowing 

dual-processor server was used for al l  performance measurements: 
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Hardware  

CPU Intel® Xeon® Processor (3.6 GHz Xeon 2 

MB L2 cache) with Intel® EM64T 

Motherboard Intel  Server Board SE7520AF2 

Memory 512 MB DDR2 

  

BIOS  

Version P06 

Adjacent Cache Line Prefetch ON 

Hardware Prefetch ON 

Hyper-Threading Technology OFF 

  

Software  

Operating system Red Hat Enterprise Linux* AS 3 

Linux Kernel  2.4.21-20.EL #1 SMP 

Intel® C++ Compiler for Linux 8.1 ( l_cce_pc_8.1.024) 

Intel® Cluster Math Kernel Library 7.2 ( l_cluster_mkl_7.2.008) 

GNU* C compiler gcc* 3.2.3 

 

As the GNU C compiler is readi ly avai lable on Linux, gcc  was used to set the performance 

basel ine. Results are reported in mi l l ions of f loat ing-point operat ions per second (MFLOPS). 

Thus, higher values indicate better performance. Al though exact performance is reported, 

the SciMark 2.0 FAQ states that actual performance may vary by ±5%. However, the 

observed performance var iat ions were general ly much smal ler than 5%. 
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Per formance (MFLOPS)  Benchmark  

Smal l  Large 

FFT 149 36 

SOR 401 393 

MC 47 47 

MV 213 211 

LU 297 292 

Compos i te  score  221 196 

Tab le  2 .  The  GNU C comp i l e r  was  used  to  gene ra te  p re l im ina ry  pe r fo rmance  da ta  fo r  Sc iMa rk  2 .0  

comp i l ed  a t  the  de fau l t  op t im i za t i on  l eve l .  

Table 2 displays SciMark 2.0 performance using the GNU C compiler at default optimizat ion. 

However, the GNU C compiler is capable of more advanced optimizat ion so addit ional 

compi ler opt ions (-O3 -march=nocona -f fast-math -mfpmath=sse) were used to set a more 

real ist ic performance basel ine. Table 3 shows the best SciMark 2.0 performance achieved 

with gcc during this study. These results wi l l  be used as the performance basel ine to 

measure tuning effect iveness. 

 

Per formance (MFLOPS)  Benchmark  

Smal l  Large 

FFT 510 45 

SOR 524 495 

MC 206 206 

MV 857 453 

LU 884 392 

Compos i te  score  596 318 

Tab le  3 .  The  GNU C comp i l e r  w i th  agg ress i ve  op t im iza t i on  was  used  to  gene ra te  base l i ne  

pe r fo rmance  da ta .  Sc iMa rk  2 .0  was  bu i l t  w i th  the  fo l l ow ing  comp i l e r  op t ions : 

-O3 -march=nocona -ffast-math -mfpmath=sse.
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Using the Intel C++ Compiler for Linux to Improve 
Performance 
I t  is standard pract ice to submit results for unmodif ied benchmarks in order to make direct 

comparisons between results and to keep an even playing f ie ld between competitors. 

Therefore, before examining source code modif icat ions that could potential ly improve 

performance, SciMark 2.0 was simply recompiled with the Intel C++ Compiler for Linux. The 

Intel  compilers are designed to take maximum advantage of Intel  processor architecture so 

some performance improvement is expected over the GNU compiler, which is designed for 

general i ty rather than maximum performance. As such, recompi l ing SciMark 2.0 with the 

Intel  compiler at default optimizat ion improves the benchmark composite score relat ive to 

the GNU basel ine as shown in Table 4. Simi lar results were obtained for the large problem 

sizes, as shown in Table 5. 

 

Per formance (MFLOPS)  for  Smal l  P rob lems Benchmark  

GNU base l ine  In te l  base l ine  Speedup 

FFT 510 512 1.0 

SOR 524 759 1.4 

MC 206 153 0.7 

MV 857 883 1.0 

LU 884 1282 1.4 

Compos i te  score  596 718 1.2 

Tab le  4 .  The  In te l  C++ Comp i l e r  fo r  L inux  a t  the  de fau l t  op t im i za t ion  l eve l  imp roves  the  

benchmark  compos i te  sco re  re l a t i ve  to  the  GNU base l i ne  fo r  the  sma l l  p rob lem s i zes .  
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Per formance (MFLOPS)  for  Large P rob lems Benchmark  

GNU base l ine  In te l  base l ine  Speedup 

FFT 45 45 1.0 

SOR 495 720 1.5 

MC 206 153 0.7 

MV 453 455 1.0 

LU 392 402 1.0 

Compos i te  score  318 355 1.1 

Tab le  5 .  The  In te l  C++ Comp i l e r  fo r  L inux  a t  the  de fau l t  op t im i za t ion  l eve l  imp roves  the  

benchmark  compos i te  sco re  re l a t i ve  to  the  GNU base l i ne  fo r  the  l a rge  p rob lem s i zes .  

Though default optimizat ion yields good results, more aggressive optimizat ion can improve 

performance even further.  The -fast option encompasses several common compiler 

optimizations: -O3, -xP, -ipo. The -O3  opt ion enables the default optimizat ions 

plus other optimizat ions designed to improve the performance of f loat ing-point- intensive 

loops. The Intel compilers also have options to opt imize for specif ic Intel processor famil ies. 

The -xP  f lag tel ls the compiler to generate a binary tuned specif ical ly for Intel processors 

that support Streaming SIMD Extensions 3 (SSE3) instruct ions. The -ipo option enables 

interprocedural optimizat ions such as in l ine function expansion. 

By defaul t,  the Inte l compilers conservat ively assume that some memory locat ions are 

al iased and are referenced by more than one var iable. This dependency prevents the 

compi ler from performing some optimizations. The SciMark 2.0 source code does not 

contain al iased memory locat ions so the -fno-alias  f lag was also used. ( I t  is worth 

noting that improper use of the -fno-alias  f lag can result in incorrect calculat ions. ) 

Aggressive optimizat ion with the Intel C++ compiler resulted in signif icant ly greater 

performance relat ive to the GNU basel ine for both the smal l ,  as shown in Table 6, and the 

large problem sizes, as shown in Table 7. The Intel  compiler doubles the performance of 

some kernels. 
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Per formance (MFLOPS)  for  Smal l  P rob lems Benchmark  

GNU base l ine  In te l  opt im ized Speedup 

FFT 510 521 1.0 

SOR 524 1092 2.1 

MC 206 447 2.2 

MV 857 832 1.0 

LU 884 1827 2.1 

Compos i te  score  596 943 1.6 

Tab le  6 .  The  I n te l  C++ Comp i l e r  fo r  L i nux  us i ng  t he  “-fast -fno-alias”  op t im i za t i on  f l ags  

s ign i f i can t l y  imp roves  the  benchmark  compos i te  sco re  re l a t i ve  to  the  GNU base l i ne  fo r  the  sma l l  

p rob lem s i zes .  Pe r fo rmance  i s  a l so  s ign i f i can t l y  improved  fo r  th ree  o f  t he  f i ve  ke rne l s .  

 

Per formance (MFLOPS)  for  Large P rob lems Benchmark  

GNU base l ine  In te l  compi le r  Speedup 

FFT 45 45 1.0 

SOR 495 1015 2.1 

MC 206 447 2.2 

MV 453 457 1.0 

LU 392 389 1.0 

Compos i te  score  318 389 1.2 

Tab le  7 .  The  I n te l  C++ Comp i l e r  fo r  L i nux  us i ng  t he  “-fast -fno-alias”  op t im i za t i on  f l ags  

fu r t he r  imp roves  the  benchmark  compos i t e  sco re  re l a t i ve  to  the  GNU base l i ne  fo r  t he  l a rge  

p rob lem s i zes .  

Performance is also signi f icantly improved for two of the f ive kernels. 
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Using the Intel Math Kernel Library (MKL) to Improve 
Performance 
Most benchmark code is designed for portabi l i ty rather than maximum performance on a 

part icular platform. However, opt imized numerical l ibrar ies are readi ly avai lable for most 

platforms. I t  is standard pract ice to use numerical l ibrar ies for common mathematical 

operations. For example, the Basic Linear Algebra Subprograms (BLAS) and the Linear 

Algebra Package (LAPACK) provide standard interfaces to many l inear algebra functions. 

Fourier transform l ibrar ies are also avai lable. 

Intel® Math Kernel Library ( Intel® MKL) contains highly optimized BLAS, LAPACK, and 

Fourier transform implementat ions. I t  also contains two vector l ibrar ies for random number 

generat ion and transcendental funct ions. These capabi l i t ies are directly appl icable to the 

SciMark 2.0 FFT, MC, MV, and LU kernels. Many Intel MKL functions are also threaded to 

take advantage of mult iprocessor systems l ike the one used in this study. The compiler- level 

tuning described in the previous section did not modify the or iginal benchmark source code. 

That constraint is now removed to accommodate MKL. 

Tuning the FFT Kernel with the Intel MKL Discrete Fourier 
Transform API 
The fast Fourier transform is a wel l-studied algor ithm that is used in a wide variety of 

appl icat ions. Developers can often choose from several off-the-shelf  discrete Fourier 

transform (DFT) l ibrar ies. Unl ike l inear algebra, however, there are no standard cal l ing 

conventions for DFT funct ions. Replacing the hand-coded transform in the SciMark 2.0 FFT 

kernel therefore requires some code modif icat ion in order to use Intel MKL. 

Rather than attempting to provide a unique function for every DFT permutation, Intel MKL 

uses a general-purpose API.  Developers describe the desired transform to Intel MKL before 

in it iat ing the computation. For example, the SciMark 2.0 FFT kernel computes a complex 1D 

forward-backward transform on an array of 1024 numbers. With Intel MKL, the developer 

creates a descriptor of th is transform as shown in the fol lowing code. 

 
#include <mkl.h> 
 
int N = 1024; 
long status; 
double *x = RandomVector ((2 * N), R); 
double scale = 1.0 / (double)N; 
DFTI_DESCRIPTOR *dftiHandle; 
 
status = DftiCreateDescriptor (&dftiHandle, DFTI_DOUBLE, DFTI_COMPLEX, 1, N); 
status = DftiSetValue (dftiHandle, DFTI_BACKWARD_SCALE, scale); 
status = DftiCommitDescriptor (dftiHandle); 
 
status = DftiComputeForward (dftiHandle, x); 
status = DftiComputeBackward (dftiHandle, x); 
 
status = DftiFreeDescriptor (&dftiHandle); 
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The cal l  to DftiCreateDescriptor  al locates and init ia l izes a descriptor for a double 

precision, complex 1D DFT of size N = 1024. (Note that the transform array is dimensioned 

to 2048 to accommodate the real and imaginary parts of each complex number. ) 

DftiSetValue  appl ies the specif ied scal ing factor to the backward transform. 

DftiCommitDescriptor  does what i ts name impl ies. dftiHandle  can now be used to 

transform any array that is consistent with the descriptor. DftiComputeForward  and 

DftiComputeBackward  perform the actual forward and backward transforms on the array 

using the suppl ied descr iptor.  Descriptors can be reused, but when they are no longer 

needed, DftiFreeDescriptor  f rees the memory al located to hold the descriptor. This 

versati le API al lows developers to describe and compute a wide variety of DFT’s. I t is a lso 

much easier than try ing to remember the name and prototype of numerous functions that 

compute a specif ic type of DFT. 

Replacing the hand-coded DFT in the SciMark 2.0 FFT kernel with MKL gives a signif icant 

speedup over basel ine performance (Table 8). I t  is worth noting that on mult iprocessor 

systems, Intel MKL automatical ly computes mult idimensional DFT’s in paral le l .  

 

Per formance (MFLOPS)  FFT Benchmark  

GNU base l ine  MKL Speedup 

Smal l  problem (N = 1024) 510 1817 3.6 

Large problem (N = 1048576) 45 600 13.3 

Tab le  8 .  Rep lac ing  the  hand-coded  t rans fo rm in  the  Sc iMa rk  2 .0  FFT  ke rne l  w i th  I n te l  MKL 

s ign i f i can t l y  imp roves  pe r fo rmance .  

Tuning the LU Kernel with the Intel MKL LAPACK 
Implementation 
Like the Fourier transform, LU factor izat ion is another common mathematical operation. The 

MKL LAPACK implementat ion contains a sui table funct ion for the SciMark 2.0 LU kernel.  

Specif ical ly, the dgetrf  funct ion computes the LU factor izat ion of a general ,  double 

precision M x N matr ix. Replacing the hand-coded LU factor izat ion function in SciMark 2.0 

with dgetrf  requires attention to some important detai ls because SciMark 2.0 is wri t ten in 

C whereas LAPACK only def ines a Fortran interface. 
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Syntax 
call dgetrf (m, n, A, lda, ipiv, info) 
 
Input Parameters 
m INTEGER Number of rows in matrix A (m >= 0) 
n INTEGER Number of columns in matrix A (n >= 0) 
A DOUBLE PRECISION 

DIMENSION (lda,*) 
Input matrix 

lda INTEGER First dimension of A  
 
Output Parameters 
A  Overwritten by L and U 
ipiv INTEGER 

DIMENSION MAX(1, MIN(m,n)) 
Pivot indices 

info INTEGER Error code 

 

Fortran is cal l-by-reference whi le C is cal l-by-value. The fol lowing funct ion cal l  adheres to 

Fortran cal l ing conventions: 

 
   dgetrf (&N, &N, A, &N, pivot, &error); 

Arrays in C are often al located as pointers-to-pointers, which are not necessar i ly contiguous 

in memory. Much better performance is possible with contiguous data so the C interface to 

dgetrf  expects a vector. Final ly, Fortran uses column-major ordering for arrays but C uses 

row-major ordering. The data suppl ied to dgetrf  must be in column-major order to get 

correct results. 

This attention to detai l  pays of f because the Intel MKL LU factorizat ion signif icantly improved 

performance for the large problem, as shown in Table 9. Paral le l ism is an added bonus that 

improves performance even further. Though Intel MKL performance for the smal l  problem is 

good, i t  is s l ight ly worse than the best performance achieved by the Intel compiler. A 

problem this smal l  does not merit the LAPACK overhead. Simi lar ly,  a 100 x 100 LU 

factorization is too smal l  to benef i t  from mult i threading. 

 

LU Benchmark  Per formance (MFLOPS)  

 GNU base l ine  MKL Speedup 

  1- th read 2- th reads 1- th read 2- th reads 

Small  problem 884 1680 N/A 1.9 N/A 

Large problem 392 3837 6646 9.8 16.9 

Tab le  9 .  Rep lac ing  the  hand-coded  LU fac to r i za t i on  i n  the  Sc iMa rk  2 .0  LU  ke rne l  w i th  I n te l  MKL  

s ign i f i can t l y  imp roves  pe r fo rmance  fo r  the  l a rge  p rob lem.  

Note:  mult i threading does not help the smal l  problem because there is not enough work in a 

100 x 100 LU factorizat ion to meri t thread creation. 
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Parallelizing the LU Kernel for a Cluster 
In addit ion to thread-level paral le l ism, there is yet another advantage to using the Intel MKL 

LAPACK implementat ion. Namely, Intel  Cluster MKL supports the distr ibuted-memory paral le l  

version of LAPACK cal led ScaLAPACK (Scalable LAPACK). Even though the large LU 

problem in SciMark 2.0 is far too smal l  to merit solut ion on a cluster, a ScaLAPACK 

implementat ion is presented here to show that with a few adjustments, the Intel  MKL version 

of the LU kernel can solve much larger problems. These adjustments can be summarized in 

four steps: 

1.  In it ia l ize the process grid 

2.  Create a descriptor for each matr ix that wi l l  be distr ibuted across the process gr id 

3.  Replace the cal l  to dgetrf  with pdgetrf  ( the ‘p’ is for paral le l )  

4.  Release the process gr id.  

The ScaLAPACK SL_INIT routine creates a vi rtual process gr id on which the computation wi l l  

be performed. This also al lows each process to f ind i ts locat ion in the process gr id and 

determine i ts sub-domain of the global computation. ScaLAPACK scales wel l  because both 

data and work are div ided across mult iple processes, which run in paral le l  on dif ferent 

processors. 

The developer creates a descriptor for each matr ix involved in the computation. The 

descriptor is simply an array that contains such information as the matr ix type (e.g., dense 

or banded), the handle for the process gr id, the tota l number of rows and columns in the 

global matr ix, the blocking factor (discussed below), the process holding the f i rst row and 

column of the global matr ix, and the leading dimension of the local sub-matr ix. These 

descriptors determine how Intel Cluster MKL distr ibutes across the process grid. Only one 

matr ix descriptor is needed for LU factor izat ion. 

In ScaLAPACK, matr ices are distr ibuted in block-cycl ic fashion (Figure 1). The block size 

speci f ied in the matr ix descriptor great ly affects overal l  paral le l  performance. There are no 

hard-and-fast rules for sett ing block size but, in general, a large block size minimizes 

communicat ion overhead at the expense of load balance. Conversely, a smal l  block size 

improves load balance but increases communicat ion between the processes. This tradeoff is 

i l lustrated in Figure 1 for a lower-tr iangular matr ix. In the lef tmost diagram in Figure 1, not ice 

that process-0 has signi f icantly more of the matr ix than process-3. The r ightmost 2D block-

cycl ic distr ibut ion is a def in ite improvement over a simple 1D block distr ibut ion. However,  

communication is required along each process boundary. Comparing the two 2D block-cycl ic 

distr ibut ions shown in Figure 1, i t  is clear that the r ightmost diagram has better load balance 

but higher communication overhead. 
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Figure 1: ScaLAPACK uses block-cycl ic data distr ibut ion to improve load balance. 

Once the global matr ix is properly distr ibuted, the work can be distr ibuted by replacing the 

cal l  to dgetrf  (described in the previous section) with a cal l  to i ts paral le l  counterpart: 

 
   pdgetrf_ (&global_rows,   // Number of rows in the global matrix 
             &global_cols,   // Number of columns in the global matrix 
             A,              // Local sub-domain of global matrix 
             &one, 
             &one, 
             descA,          // Descriptor for global matrix 
             pivot, 
             &error); 

Comments highl ight the key arguments that di f ferentiate pdgetrf  from dgetrf .  I t  is 

important to note that the LU matr ix is now spread across mult iple processes. The matr ix 

argument suppl ied to pdgetrf  is actual ly a sub-matr ix local to the cal l ing process. Instead 

of al locat ing memory for the ent i re LU matr ix, the processes need only al locate enough 

memory for their respective sub-domains. ScaLAPACK can harness the memory of an entire 

cluster to solve l inear algebra problems too large for a single computer. 

Intel  Cluster MKL makes i t possible to perform the LU factorizat ion on a 40000 x 40000 

matr ix using a smal l  cluster [8 dual-3.0 GHz Intel  Xeon processors (512 KB L2 cache nodes 

and 2 GB memory per node) connected via Gigabit Ethernet and Inf iniBand*] in a few 

minutes (approximately 42000 MFLOPS using Gigabit Ethernet and 46000 MFLOPS using 

Inf iniBand). The Inte l MPI Library 1.0 was used as the underlying communication layer 

because it  is fabric- independent. A double precision array of this size requires approximately 

12 GB memory. Few computers have this much memory so a slow, out-of-core solut ion 

would normal ly be required to solve a problem this large. I f  more compute nodes, and 

hence, more memory, are added to the cluster, i t  is possible to solve even larger problems. 

The previous discussion omits many detai ls for the sake of brevity and only hints at the 

power and f lexibi l i ty of ScaLAPACK. The reader is referred to the ScaLAPACK User’s Guide 

and the Intel  Math Kernel L ibrary – Reference Manual for more detai led examples of solving 

large l inear a lgebra problems. 
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Tuning the MC Kernel with the MKL Vector Statistical Library 
and OpenMP 
Simulat ion methods and stochastic algori thms require a set of randomly determined ini t ia l  

condit ions or a continuous stream of random numbers. Because random number generat ion 

is such a common feature in computational methods, the Intel MKL Vector Stat ist ical Library 

(VSL) provides optimized random number generators for common probabi l i ty distr ibut ions: 

uniform, Gaussian, exponential ,  Poisson, etc. The basic random number generators can be 

used to generate non-uniform distr ibut ions. Users can also register their own random 

number generators with VSL. 

VSL functions return vectors of random numbers because algorithms that use random 

number generat ion usual ly need many random numbers instead of just one. Also, vector 

functions give better performance than scalar random number generators. 

The SciMark 2.0 MC kernel calculates π by randomly sampl ing points in a unit square and 

determining whether these points fal l  within the upper-r ight quadrant of a unit ci rcle 

inscribing the square: 

 
double MonteCarlo_integrate (int Num_samples) 
{ 
   int under_curve = 0; 
   int count; 
 
   Random R = new_Random_seed (SEED); 
   for (count = 0; count < Num_samples; count++) 
   { 
       double x = Random_nextDouble ®; 
       double y = Random_nextDouble ®; 
 
       if (x*x + y*y <= 1.0) under_curve++; 
   } 
   Random_delete ®; 
 
   return ((double) under_curve / Num_samples) * 4.0; 
} 

 

The fol lowing steps are used to implement VSL in the SciMark 2.0 MC kernel:  

1.  For eff ic iency, VSL provides a vector of random numbers. Creating a vector for the 

ent ire stream is impract ical because Num_samples  may be too large. Therefore, a 

stat ic array of def ined size is used to hold blocks of the random number stream. 

2.  A random number stream of type VSLStreamStatePtr  is in i t ia l ized with a cal l  to 

vslNewStream ,  speci fy ing which basic random number generator and seed to use. 

3.  Next, the cal l  to vdRngUniform  puts a uniform distr ibut ion of (2 * BLOCK_SIZE)  

double precision random numbers of range [0.0 to 1.0] into the array rnBuf .  

4.  The random numbers are used in the π  calculat ion. 

5.  The cal l  to vslDeleteStream  deletes the random number stream when it  is no 

longer needed. 
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#include <mkl.h> 
 
double MonteCarlo_integrate (int Num_samples) 
{ 
   int under_curve = 0; 
 
   int i, j, blocks, tail; 
   static double rnBuf[2 * BLOCK_SIZE]; 
   double rnX, rnY; 
   VSLStreamStatePtr stream; 
 
   blocks = Num_samples / BLOCK_SIZE; 
   tail = Num_samples - blocks * BLOCK_SIZE; 
 
   vslNewStream (&stream, VSL_BRNG_MCG31, SEED); 
 
   for (i = 0; i < blocks; i++) 
   { 
      vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream, 
                    (2 * BLOCK_SIZE), rnBuf, 0.0, 1.0); 
 
      for (j = 0; j < BLOCK_SIZE; j++) 
      { 
         rnX = rnBuf[2*j]; 
         rnY = rnBuf[2*j+1]; 
         if (rnX*rnX + rnY*rnY <= 1.0) under_curve++; 
      } 
   } 
 
   vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream, (2 * tail), rnBuf, 0.0, 1.0); 
 
   for (j = 0; j < tail; j++) 
   { 
      rnX = rnBuf[2*j]; 
      rnY = rnBuf[2*j+1]; 
      if (rnX*rnX + rnY*rnY <= 1.0) under_curve++; 
   } 
 
   vslDeleteStream (&stream); 
   return ((double) under_curve / Num_samples) * 4.0; 
} 

The underlying MC algori thm has not been changed in the VSL implementat ion. Scalar 

random number generat ion has simply been replaced by a vector approach, result ing in a 

signif icant performance improvement,  as shown in Table 10. 

The MC algorithm is natural ly paral le l .  Each random sample is independent of every other 

sample. VSL functions are threadsafe so they can be used for paral le l  random number 

generat ion. After the in i t ia l  VSL implementat ion, OpenMP is used to paral le l ize the MC 

kernel. OpenMP is a portable standard that i t  is easy-to-use and supported by the Intel  

compilers. The VSL/OpenMP version of the SciMark 2.0 MC kernel is shown below: 
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   nThreads = maxThreads = omp_get_max_threads (); 
   omp_set_num_threads (nThreads); 
 
   vslNewStream (&streamX, VSL_BRNG_MCG31, SEED); 
   vslCopyStream (&streamY, streamX); 
   vslLeapfrogStream (streamX, 0, 2); 
   vslLeapfrogStream (streamY, 1, 2); 
 
   streamXThread = (VSLStreamStatePtr) malloc (nThreads * 
                                               sizeof (VSLStreamStatePtr)); 
   streamYThread = (VSLStreamStatePtr) malloc (nThreads * 
                                               sizeof (VSLStreamStatePtr)); 
 
   for (i = 0; i < nThreads; i++) 
   { 
      vslCopyStream (&(streamXThread[i]), streamX); 
      vslCopyStream (&(streamYThread[i]), streamY); 
      vslSkipAheadStream (streamX, BLOCK_SIZE); 
      vslSkipAheadStream (streamY, BLOCK_SIZE); 
   } 
 
   #pragma omp parallel for \ 
        reduction (+:under_curve) \ 
        private (i, j, rnX, rnY, threadID, thread_under_curve, rnBufX, rnBufY) 
   for (i = 0; i < blocks; i++) 
   { 
      threadID = omp_get_thread_num (); 
 
      vdRngUniform (VSL_METHOD_DUNIFORM_STD, streamXThread[threadID], 
                    BLOCK_SIZE, rnBufX, 0.0, 1.0); 
      vdRngUniform (VSL_METHOD_DUNIFORM_STD, streamYThread[threadID], 
                    BLOCK_SIZE, rnBufY, 0.0, 1.0); 
 
      thread_under_curve = 0.0; 
 
      for (j = 0; j < BLOCK_SIZE; j++) 
      { 
         rnX = rnBufX[j]; 
         rnY = rnBufY[j]; 
         if (rnX*rnX + rnY*rnY <= 1.0) thread_under_curve++; 
      } 
      under_curve += thread_under_curve; 
 
      #pragma omp critical 
      { 
         vslCopyStreamState (streamXThread[threadID], streamX); 
         vslCopyStreamState (streamYThread[threadID], streamY); 
         vslSkipAheadStream (streamX, BLOCK_SIZE); 
         vslSkipAheadStream (streamY, BLOCK_SIZE); 
      }   // End OpenMP critical section 
   }   // End OpenMP parallel loop 

Addit ional code modif icat ions and VSL funct ions are needed to generate a reproducible 

random number stream. First, each thread creates i ts own copy of the random number 

stream with vslCopyStream .  The cal l  to vslSkipAheadStream  ensures that their  random 

number sequences do no overlap. The OpenMP “parallel for” pragma creates threads 

and executes the next for- loop in paral le l .  The OpenMP private  clause creates thread-

private copies of the specif ied var iables. The OpenMP “reduction (+:under_curve)” 

clause creates a pr ivate copy of under_curve  for each thread and then sums the values 

from each thread at the end of the paral le l  computat ion. 
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There is a certa in amount of system overhead associated with mult i threading. Before 

creating threads, the programmer must ask, “Does the amount of computat ion meri t thread 

creat ion?” For example, the trai l ing loop is too smal l  to bother paral le l iz ing. Most of the work 

is in the leading loop. The MC kernel  steadi ly increases the number of random samples used 

to calculate π unti l  the t imer resolut ion threshold is reached. To avoid tr ipping this threshold 

when the number of samples is too smal l  to ef fect ively use mult iple threads, the number of 

samples is set to 268,435,456 for the OpenMP tests. This is the value at which the serial  

VSL implementat ion reaches the t imer resolut ion threshold on the test system. Taking 

advantage of both processors in the test system improves MC performance, as shown below 

in Table 10. 

 

MC Benchmark  Per formance (MFLOPS)  Speedup 

GNU basel ine 206  

Intel  compiler only 447 2.2 

Intel  compiler + VSL 699 3.4 

Intel  compiler + VSL + OpenMP 1003 4.9 

Tab le  10 .  Rep lac ing  the  sca la r  random numbe r  gene ra to r  w i th  a  vec to r  r andom numbe r  gene ra to r  

i n  the  In te l  MKL VSL  and  emp loy i ng  mu l t ip l e  t h reads  imp roves  pe r fo rmance  o f  t he  Sc iMa rk  2 .0  

MC ke rne l  re l a t i ve  to  the  GNU base l i ne .  

Tuning the MV Kernel Using the Intel MKL Sparse BLAS 
Capability 
Matr ix-vector mult ipl icat ion is such a common operation that i t  is def ined in BLAS. For 

example, the dgemv  funct ion performs a double precision, matr ix-vector product. Standard 

BLAS functions are designed with dense matr ices in mind but the SciMark 2.0 MV kernel  

uses a sparse matr ix, in which the major i ty of elements are zeros. One could treat a sparse 

matr ix as a dense matr ix and simply use a standard BLAS routine, but this is wasteful in 

terms of storage and computation. The large MV problem uses a 100,000 x 100,000 double 

precision matr ix with only 1,000,000 nonzero elements. A dense matr ix representat ion would 

require approximately 75 GB of memory. 

Sparse matr ices are common in technical computing so many compressed storage schemes 

have been devised. These schemes typical ly store only the nonzero matr ix e lements and 

their locations in the original 2D context. The SciMark 2.0 MV kernel uses a compressed 

sparse row (CSR) format consist ing of three arrays: one to store the nonzero values, one to 

store the column index of each nonzero value, and one containing the index into the values 

array for the f i rst nonzero element of each row. The fol lowing example f rom the MKL 

documentation i l lustrates the CSR format. 
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The size of the values and column index arrays is equal to the number of nonzero elements. 

The size of the row index array is equal to the number of rows plus one. Therefore, the 

sparse representat ion of the MV large matr ix requires only 16 MB of memory compared to 75 

GB for the dense representat ion. 

Fortunately, Intel  MKL supports the CSR format so very l i t t le code modif icat ion is necessary 

to use the corresponding Intel MKL sparse BLAS rout ine. First, i t  is necessary to include the 

mkl_spblas.h  header. Second, the Intel  MKL sparse storage scheme starts array indices 

at one rather than zero so the values in the MV row and column index arrays must be 

incremented by one. Final ly, the Intel  MKL sparse BLAS function mkl_dcsrgemv  is cal led to 

compute a double precision, sparse matr ix-vector mult ipl icat ion in CSR format. 

In general,  BLAS is used for large computations because of the overhead incurred. The MV 

smal l  and large problems are too smal l  to merit the overhead of BLAS. For such smal l  

problems, the mkl_dcsrgemv  function actual ly degrades performance relat ive to the GNU 

and Intel compiler basel ines (Tables 6 and 7). However, even the large MV problem, which 

only requires 16 MB of memory, could be considered smal l  when most modern workstations 

measure memory in gigabytes. 

A problem size of N = 1,600,000 and NZ = 250,000,000 takes advantage of a 64-bit address 

space and amort izes the normal BLAS startup costs whi le keeping the same degree of 

sparseness as the or iginal  large MV problem. The mkl_dcsrgemv  function performs about 

as wel l  as the GNU and Intel compilers but i t  has an important advantage – i t  is already 

threaded, as shown in Table 11. 
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Ext ra- la rge MV prob lem Per formance  (MFLOPS)  Speedup 

GNU compiler 183  

Intel  compiler 181 1.0 

Intel  compiler + MKL 177 1.0 

Intel  compiler + MKL + OpenMP 362 2.0 

Tab le  11 .  Rep lac ing  the  hand-coded  spa rse  ma t r i x -vec to r  mu l t i p l i ca t ion  i n  t he  Sc iMa rk  2 .0  MV 

ke rne l  w i th  I n te l  MKL and  enab l i ng  mu l t i t h read ing  imp roves  pe r fo rmance .  

Note: a di f ferent system was used to generate this performance data. The dif ferences are as 

fol lows: dual  Inte l Xeon processor with Intel EM64T (3.6 GHz, 1 MB L2 cache, 4 GB 

memory), Intel Cluster MKL 8.0. 

Conclusion 
The SciMark 2.0 benchmark was used to demonstrate that Intel  programming tools can 

dramatical ly improve appl icat ion performance on Intel-based platforms with a minimum of 

effort.  The Intel C++ compiler for Linux improved the benchmark scores with no modif icat ion 

of the or iginal source code. Through relat ively smal l  source code modif icat ions, the Intel 

Math Kernel Library improved performance even further. The best single-node SciMark 2.0 

performance for the smal l  and large problem sizes is shown in Tables 12 and 13, 

respectively.  In nearly every instance the individual  benchmark kernels also improve. 

Consequently, composite scores improve for both problem sizes. The composite score for 

the large problems improves dramatical ly because the ful l  power of MKL can be brought to 

bear on the FFT and LU kernels. 
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Per formance (MFLOPS)  for  Smal l  P rob lems Benchmark  

GNU base l ine  In te l  best  Speedup 

FFT 510 1817 3.6 

SOR 524 1092 2.1 

MC 206 1003 4.9 

MV 857 832 1.0 

LU 884 1827 2.1 

Compos i te  score  596 1314 2.2 

Tab le  12 .  The  I n te l  C++ Comp i l e r  f o r  L i nux  and  I n te l  MKL s ign i f i can t l y  imp rove  Sc iMa rk  2 .0  

pe r fo rmance  re l a t i ve  to  the  GNU base l i ne  fo r  the  sma l l  p rob lem s i zes .  

 

Per formance (MFLOPS)  for  Large P rob lems Benchmark  

GNU base l ine  In te l  best  Speedup 

FFT 45 600 13.3 

SOR 495 1015 2.1 

MC 206 1003 4.9 

MV 453 457 1.0 

LU 392 6646 16.9 

Compos i te  score  318 1944 6.1 

Tab le  13 .  The  I n te l  C++ Comp i l e r  f o r  L i nux  and  I n te l  MKL s ign i f i can t l y  imp rove  Sc iMa rk  2 .0  

pe r fo rmance  re la t i ve  to  t he  GNU base l i ne  fo r  t he  l a rge  p rob lem s i zes .  

I t  is worth noting that many MKL functions are mult i threaded so cal l ing these functions 

al lows an appl ication to take advantage of paral le l  computing. For example, mult idimensional 

DFT’s and most BLAS and LAPACK functions can use threads to solve large problems on 

mult iprocessor systems. In the case of the SciMark 2.0 LU and MV kernels, MKL creates 

threads to take advantage of shared-memory paral le l ism. By modifying the MKL version of 

the LU kernel to use Cluster MKL, i t is possible to factor very large matr ices on a cluster.  

With a l i t t le more tuning effort i t  is l ikely that the performance of the SciMark 2.0 SOR kernel 

can be improved even further. Perhaps restructuring some loops could improve the data 
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layout in memory and thus improve performance. The SOR algorithm is readi ly paral le l izable 

with OpenMP or MPI. However, this art ic le i l lustrates that with minimal effort,  s ignif icant 

performance gains are possible using Intel software products. 
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