Welcome!

Mass Spectrometry meets Cheminformatics
Tobias Kind and Julie Leary
UC Davis

Course 9: Prediction and simulation of mass spectra

Class website: CHE 241 - Spring 2008 - CRN 16583
Slides: http://fiehnlab.ucdavis.edu/staff/kind/Teaching/
PPT is hyperlinked – please change to Slide Show Mode
History of artificial intelligence and mass spectrometry

Dendral project at Stanford University (USA)
Started in 1960s
Pioneered approaches in artificial intelligence (AI)

Aim:
Prediction of isomer structures from mass spectra
Idea: Self-learning or intelligent algorithm

Participants:
Lederberg, Sutherland, Buchanan, Feigenbaum, Duffield, Djerassi, Smith, Rindfleisch, many others…

Figure: Heuristic DENDRAL:
A Program for Generating Explanatory Hypotheses in Organic Chemistry
Prediction and simulation of mass spectra

A) Prediction of the isomer structure or substructures from a given mass spectrum
 The structure is directly deduced from the mass spectrum or generated by
 a molecular isomer generator or existing structures can be found in a structure database

B) Simulation of a mass spectrum from a given isomer structure
 The mass spectral peaks and abundances are generated by a machine learning algorithm
 The structures can be obtained from a isomer database (PubChem, LipidMaps)
 or a sequence database (Swiss-Prot, NCBI) in case of proteins
Application of machine learning for detection of substructures from mass spectra

Data Preparation
- Basic Statistics, Remove extreme outliers, transform or normalize datasets, mark sets with zero variances

Feature Selection
- Predict important features with MARS, PLS, NN, SVM, GDA, GA; apply voting or meta-learning

Model Training + Cross Validation
- Use only important features, apply bootstrapping if only few datasets; Use GDA, CART, CHAID, MARS, NN, SVM, Naive Bayes, kNN for prediction

Model Testing
- Calculate Performance with Percent disagreement and Chi-square statistics

Model Deployment
- Deploy model for unknown data; use PMML, VB, C++, JAVA

What is machine learning?
Prediction of substructures from mass spectra

Working examples for EI mass spectra:
Varmuza classifiers in **AMDIS** and **MOLGEN-MS**

Substructure algorithm (Stein S.E.)
Implemented in NIST-MS search program

Mass spectral classifiers for supporting systematic structure elucidation
Chemical Substructure Identification by Mass Spectral Library Searching
Substructures deduced from mass spectra for generation of isomer structures

1) **Molecular formula** must be known - can be detected from molecular ion and isotopic pattern
2) **Good-list** (substructure exists) and **bad-list** (substructure not existent) approach
3) Sub-structures are combined in **deterministic** or **stochastic** (random) manner
4) **Database** or **molecular isomer generator** (combinatorial, graph theory) approach for generating or finding possible structure candidates

Example:
Molecular formula C₆ClH₅O;
calculated from molecular ion

Goodlist:
-benzene
-hydroxy
-chlorine

Badlist:

<table>
<thead>
<tr>
<th>Database (Chemspider): 25 hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(including all possible existing structures)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOLGEN Demo:</th>
</tr>
</thead>
<tbody>
<tr>
<td>All constructed isomers: 8372</td>
</tr>
</tbody>
</table>

Total: 3 possible results
Simulation of mass spectra

Why is simulation of mass spectral fragmentation important?

Imagine – you have a **structure database** of all molecules
Imagine – you can **simulate mass spectra** for all these molecules
Imagine – you can **match** your **experimental spectra** against a database of **calculated spectra**

If the calculation is simple the database is not needed;
In-silico MS fragments can be calculated on-the-fly
Simulation of alkane mass spectra (I)

Approach
Use of artificial neural networks (ANN) (machine learning)
Electron impact spectra 70 eV
Substructure descriptors were used for calculation
Selection of 44 \(m/z \) positions – training was performed for correct intensity

117 noncyclic alkanes and 145 noncyclic alkenes
training set: 236 molecules
prediction set: 26 compounds

Problems
Prediction or validation set very small (should be 30%)
Prediction of molecular ion (usually very low abundant)
Overfitting possible, works only for selected substance classes

Source: Jalali-Heravi M. and Fatemi M. H.; *Simulation of mass spectra of noncyclic alkanes and alkenes using artificial neural network*
Simulation of alkane mass spectra (II)

2,3,3-trimethylpentane (a and b) and 2,3,4-trimethylpentane (c and d).

Source: Jalali-Heravi M. and Fatemi M. H.; Simulation of mass spectra of noncyclic alkanes and alkenes using artificial neural network
Analytica Chimica Acta; Elsevier permission use for coursepack/classroom material

Structures: Chemspider
Simulation of lipid tandem mass spectra (I)

Similar structures; plus CH2 in side chains sn1 and sn2; double bonds possible
Similar and almost constant fragmentation rules
Loss of head group (diagnostic ion in MS and MS/MS spectrum)
Loss of rest one (R1) and rest two (R2) can be observed in MS/MS spectrum

Simulation of lipid tandem mass spectra (II)

Simulation of tandem mass spectra or MS/MS fragment data from LipidMaps

Experimental Mass spectrum

In-silico prediction of MS/MS mass spectral fragments

<table>
<thead>
<tr>
<th>Mass</th>
<th>C</th>
<th>DB</th>
<th>Abbrev.</th>
<th>M-sn1+H</th>
<th>M-sn1-H2O+H</th>
<th>M-sn2+H</th>
<th>M-sn2-H2O+H</th>
<th>sn1 acid(-)</th>
<th>sn2 acid(-)</th>
<th>HG</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>797.5180</td>
<td>31</td>
<td>0</td>
<td>14:0/17:0</td>
<td>587.3196</td>
<td>569.309</td>
<td>545.2727</td>
<td>527.2621</td>
<td>227.2011</td>
<td>269.2481</td>
<td>GPIns</td>
<td>C_{40}H_{77}O_{10}P</td>
</tr>
<tr>
<td>797.5180</td>
<td>31</td>
<td>0</td>
<td>17:0/14:0</td>
<td>545.2727</td>
<td>527.2621</td>
<td>587.3196</td>
<td>569.309</td>
<td>269.2481</td>
<td>227.2011</td>
<td>GPIns</td>
<td>C_{40}H_{77}O_{10}P</td>
</tr>
<tr>
<td>796.5128</td>
<td>37</td>
<td>5</td>
<td>17:0/20:5(5Z,8Z,11Z,14Z)</td>
<td>544.2675</td>
<td>526.2569</td>
<td>512.2988</td>
<td>494.2882</td>
<td>269.2481</td>
<td>301.2168</td>
<td>GPSer</td>
<td>C_{43}H_{74}NO_{10}P</td>
</tr>
<tr>
<td>796.5128</td>
<td>37</td>
<td>5</td>
<td>20:5(5Z,8Z,11Z,14Z)17:0</td>
<td>512.2988</td>
<td>494.2882</td>
<td>544.2675</td>
<td>526.2569</td>
<td>301.2168</td>
<td>269.2481</td>
<td>GPSer</td>
<td>C_{43}H_{74}NO_{10}P</td>
</tr>
<tr>
<td>796.5856</td>
<td>37</td>
<td>4</td>
<td>17:0/20:4(5Z,8Z,11Z,14Z)</td>
<td>544.3403</td>
<td>526.3297</td>
<td>510.3559</td>
<td>492.3453</td>
<td>269.2481</td>
<td>303.2324</td>
<td>GPCho</td>
<td>C_{45}H_{82}NO_{10}P</td>
</tr>
<tr>
<td>796.5856</td>
<td>37</td>
<td>4</td>
<td>20:4(5Z,8Z,11Z,14Z)17:0</td>
<td>510.3559</td>
<td>492.3453</td>
<td>544.3403</td>
<td>526.3297</td>
<td>303.2324</td>
<td>269.2481</td>
<td>GPCho</td>
<td>C_{45}H_{82}NO_{10}P</td>
</tr>
</tbody>
</table>

Spectrum Source: Lipidmaps.org
Simulation or prediction of oligosaccharide spectra (carbohydrate sequencing)

Consistent building blocks (sugars)
Consistent fragmentation allows in-silico fragment prediction
Pre-calculated fragments from known structures can be stored in database (use NIST-MS-Search)
Algorithm works also on-the-fly without database
De-novo algorithms work for truly unknown structures

See Oscar and FragLib
See GlySpy
Simulation of peptide fragmentations
(De-novo sequencing of peptides)

Principle:
De-novo sequencing of peptides (determine amino acid sequences)
De-novo algorithms can perform permutations and combinatorial calculations from all 20 amino acids (superior if the sequence is not found in a database)
Highly dependent on good mass accuracy (less than 1 ppm) of precursor ion and MS/MS fragments
Generate match score by matching in-silico fragments against experimental MS/MS spectrum

Problems:
Leucine and isoleucine have same mass
Post translational modifications (PMTs)
Missing fragment peaks

Picture source: MWTWIN help file2 (Monroe/PNNL)
Picture 2 source: Tandem mass spectrometry data quality assessment by self-convolution
Keng Wah Choo and Wai Mun Tham http://www.biomedcentral.com/1471-2105/8/352
The Last Page - What is important to remember:

Fragmentation and rearrangement rules and ion physics can be programmed into algorithms
→ Abundance calculations are problematic

Prediction of isomer substructures from mass spectra is possible
→ Works for reproducible mass spectra

A simplified simulation of mass spectra and simulation of fragmentation pattern
is only possible for certain molecule classes
→ Works only for peptides, lipids, oligosaccharides, alkanes
→ Does not work for all other molecules
→ Does not work with complex (side chain) modifications

Machine Learning Methods for simulation and prediction of mass spectra
require a large pool of diverse experimental mass spectra and MS^n spectra for training
Tasks (42 min):

Download one of the following tools:
MOLGEN, MOLGEN-MS, AMDIS, OMMSA, OSCAR or any free/commercial/demo program for in-silico peptide fragment determination or de-novo sequencing. Report on use.
Literature (36 min):

Mathematical tools in analytical mass spectrometry [DOI]
Metabolomics, modelling and machine learning in systems biology – towards an understanding of the languages of cells [DOI]
Heuristic DENDRAL: A Program for Generating Explanatory Hypotheses in Organic Chemistry [PDF]
Mass Analysis Peptide Sequence Prediction [LINK]
Links:

Used for research: (right click – open hyperlink)

http://scholar.google.com/scholar?hl=en&q=%22Simulation+of+mass+spectra
http://scholar.google.com/scholar?num=100&hl=en&lr=&safe=off&q=+Simulation+of+%22mass+spectral+fragmentation
http://www.google.com/search?num=100&hl=en&safe=off&q=in-silico+prediction+tandem+mass+spectra&btnG=Search
http://www.aseanbiotechnology.info/Abstract/21020883.pdf
http://www.google.com/search?hl=en&q=GNU+polyxmass%2C&btnG=Google+Search
http://www.google.com/search?hl=en&q=C41H76N2O15&btnG=Google+Search
http://www.google.com/search?num=100&hl=en&safe=off&q=MOLGEN+MS&btnG=Search
http://www.google.com/search?hl=en&q=G.+L.+Sutherland&btnG=Google+Search

GlySpy and the Oligosaccharide Subtree Constraint Algorithm (OSCAR)
See Mass Frontier for further discussion
MOLGEN-MS [LINK]

Of general importance for this course:
http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/Structure_Elucidation/