Welcome!

Mass spectrometry meets cheminformatics
Tobias Kind and Julie Leary
UC Davis

Course 2: Mass spectral and molecular data handling

Class website: CHE 241 - Spring 2008 - CRN 16583
Slides: http://fiehnlab.ucdavis.edu/staff/kind/Teaching/
PPT is hyperlinked – please change to Slide Show Mode
Molecules and mass spectra

Dense relationship between molecular structure and mass spectra

→ Important to handle molecular structures
→ Important to handle mass spectra and chromatograms (GC-MS, LC-MS)

ESI (pos) mass spectrum with zoom into isotopic pattern

Solanine

(InChIKey=ZGVSETXHNHBTRK-OTYSSXIJB)
How are mass spectra stored?

More than 50 vendor specific formats are known. For every MS, LC-MS, GC-MS a single file format. Mostly very complex data streams (formats).

For simple electron impact (EI) spectra m/z and intensity list sufficient

Example MSP Files

Name: Cocaine
Formal: C17H21NO4
MW: 303
CAS#: 50-36-2; EPA#: 113834
DB#: 32675
Num Peaks: 87
14 8; 15 15; 27 18; 28 15; 29 15;
30 11; 32 19; 39 32; 40 12; 41 68;
42 234; 43 16; 44 41; 45 10; 50 30;
51 121; 52 12; 53 41; 54 27; 55 78;
56 36; 57 43; 58 12; 59 50; 65 29;
66 15; 67 58; 68 63; 69 17; 70 30;
71 9; 74 6; 75 8; 77 355; 78 39;
79 40; 80 36; 81 125; 82 999; 83 367;
84 36; 91 47; 92 11; 93 51; 94 366;
95 50; 96 249; 97 111; 98 10; 100 11;
105 296; 106 30; 107 18; 108 54; 109 12;
110 18; 114 4; 118 9; 119 36; 120 22;
121 10; 122 88; 123 15; 124 11; 135 6;
138 7; 140 10; 150 27; 151 4; 152 38;
153 7; 154 14; 155 23; 166 32; 179 4;
180 19; 181 59; 182 716; 183 83; 184 8;
198 95; 199 12; 272 69; 273 14; 303 172;
304 37; 305 5;

For complex MS/MS data, accurate masses, ionization voltage and instrument method needed

Example Thermo Finnigan RAW file:

data_dependent_02 #1 RT: 0.0082

Total Ion Current: 2268344.00
Scan Low Mass: 150.00
Scan High Mass: 1000.00
Scan Start Time (min): 1.01
Scan Number: 33
Base Peak Intensity: 100761.00
Base Peak Mass: 180.95
Scan Mode: + c Full ms [150.00-1000.00]

Instrument Data:
Micro Scan Count: 3
Ion Injection Time (ms): 199.98
Scan Segment: 1
Scan Event: 1
Elapsed Scan Time (sec): 1.89
API Source CID Energy: 0.00
Resolution: Low
Average Scan by Inst: No
BackGd Subtracted by Inst: No
Charge State: 0
Inter-conversions of mass spectra

Issue: It's an extreme hassle, data may get lost, may require license
Solution: Open exchange formats (JCAMP, netCDF, mzXML)
Problem: how to convert complex mass spectral MS experiments?

See helper applications MassTransit
See helper applications ms-utils.org
See helper applications Lib2NIST
Mass Spectra – Importance of Metadata

Name: Roxithromycin
Formula: C41H76N2O15
MW: 836
CAS#: 80214-83-1
NIST#: 1005429
ID#: 2064
DB: nist_msms
Other DBs: None
Comment: Draisci R. J CHROMATOGR A 926 (1) 97-104 2001
Instrument type: QqQ/triple quadrupole
Spectrum type: ms2
Compound type: M
Precursor type: [M+H]+
Precursor m/z: 837.53
Collision energy: 25 eV
Instrument: PE Sciex API III Plus
Ionization: ESI
Ion mode: P
Collision gas: Ar
Pressure: gas target thickness 3.00x10+15 atoms/cm2

5 largest peaks:

<table>
<thead>
<tr>
<th>m/z Values</th>
<th>Intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td>679 999</td>
<td>158 380</td>
</tr>
<tr>
<td>90</td>
<td>558</td>
</tr>
</tbody>
</table>

5 m/z Values and Intensities:

<table>
<thead>
<tr>
<th>m/z Values</th>
<th>Intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td>158 380</td>
<td>552</td>
</tr>
<tr>
<td>70</td>
<td>679 999</td>
</tr>
</tbody>
</table>

Synonyms:
no synonyms.

Different MS techniques deliver different mass spectra
Information must be captured (best via XML)
Open Exchange formats for mass spectra

Common exchange formats
• JCAMP-DX format for mass spectrometry
• netCDF format for hyphenated data (LC-MS, GC-MS)
• mzXML format for (LC-MS and MS/MS)

Formats for proteomics
• mzData (PSI proteomics standard Initiative)
• mzXML (Seattle Proteome Center, sashimi) \(\Rightarrow\) New: mzML

\(\Rightarrow\) Ask vendors for multiple export options, proprietary formats are no good
\(\Rightarrow\) Format converters are only temporary solutions
mzXML format for LC-MS/MS data

Dta, mgf, pkl files hold MS/MS spectra for database search

Picture Source:
Seattle Proteome Center (SPC)
NHLBI Proteomics Center at the Institute for Systems Biology
http://www.proteomecenter.org
How does mzXML look like?

```xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<msRun
xmlns="http://sashimi.sourceforge.net/schema/
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://sashimi.sourceforge.net/schema/MsXML.xsd"
scanCount="4140"
startTime="PT120.030000S"
endTime="PT5880.790000S">
  <parentFile fileName="raft0020.mzXML"
fileType="RAWData"
fileSha1="da39a3ee5e6b4b0d3255bfe95601890af80709"/>
  <instrument manufacturer="ThermoFinnigan"
model="LCQ Classic"
ionisation="ESI"
msType="Ion Trap">
    <software type="acquisition"
name="ICIS"
version="8.4"/>
  </instrument>
  <dataProcessing>
    <software type="conversion"
name="dat2xml"
version="0.1"/>
  </dataProcessing>
  <scan num="1"
msLevel="1"
peaksCount="959"
retentionTime="PT120.030000S"
startMz="400.0000"
endMz="1400.0000"
lowMz="400.3742"
highMz="1399.3711"
basePeakMz="534.2230"
basePeakIntensity="913904.0000"
totIonCurrent="31883915.0000">
    <peaks
precision="32">Q8gv5kaBhgbDLY0rRqCAAEpJNhBGpGQ8m6CEcGnQBDyhmYP4AAAEPKp9RMQAQ8sQiEXgEABDy2RGRgC8AEPL67pG04AQ8xrDkW/EAByDzLrgRw8kAESNDf5GAcgAQ8z2I2kAD5gBDz5g8RwwAYBEBVXqR/oAESTeQhHMewARK2REDVAAABEBfF0R0AdAESzQhHBX4ARK3ZEca2QBERgrWRoomAESUIAA/gAARARKSapEcUAABERmnUJkAESuk+BGzO4A RK7Byk2RqERuuvRo+0AA==</peaks>
  </scan>
  <scan num="2"
...</scan>
</msRun>
```

General Structure of XML data

```xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<msRun ..>
  <instrument>
    ...
  </instrument>
  <dataProcessing>
    ...
  </dataProcessing>
  <scan num="1">
    ...
  </scan>
  <scan num="2">
    ...
  </scan>
  <index name="scan">
    <offset id="1">849</offset>
    <offset id="2">11405</offset>
    <offset id="3">12072</offset>
    <offset id="4">20708</offset>
  </index>
</msRun>
```
Mass spectral data handling ACD/SpecManager

- Can handle multiple formats
- Can do spectral annotations
- Can store spectra in database

See also HighChem MassFrontier
See also NIST MS Search
MS data handling - Thermo XCalibur example
BioClipse showing JCAMP file
Organic Chemistry Reminder

Molecular Formula

C₃H₇F

Isomers

Constitutional (structural) isomers

Stereoisomers (spatial isomers)

Diastereomers

Enantiomers

Cis-trans isomers

Conformers

Rotamers

Picture source: WIKIPEDIA
MS source: NIST05
Where are structures stored? (same for spectra)

A) In databases – for millions of structures

B) In structure files (text files) – for few structures
How are structures stored?

…here cometh the (true) tower of Babel again
…more than 100 different file formats in use

Structure formats can store 1D, 2D and 3D coordinate information and metadata

InChI=1/C2H6O/c1-2-3/h3H,2H2,1H3
InChIKey=LFSQWFJLHTTHZ-UHFFFAOYAB

InChI=1/C8H8/c1-2-5-3(1)7-4(1)6(2)8(5)7/h1-8H
InChIKey=TXWRERCHRDBNLG-UHFFFAOYAL

InChIKey Source: ChemSpider
Chemical Structure Handling

Most common structure formats you need to know:

- **SMILES**/SMARTS - Simplified Molecular Input Line Entry Specification
- **SDF**/MOL - Structure Data File
- **InChI**/InChIkey - IUPAC International Chemical Identifier
- **PDB** - Protein Data Bank
- **CML** - Chemical Markup Language

Some problems:

- Data format needs to be based on Open Standard (problem with SMILES, ok with CML)
- Stereo and aromatic bond information needs to be saved (ok with SDF)
- Format needs to be small in space for millions of compounds (ok with SMILES)
- SMILES notation needs to be unique (problem with SMILES)
- Structure representation should be portable and based on Open Standard (ok with CML)
Chemical Structure Identifiers

Structure Identifiers are needed for uniquely identifying structures Important for searching chemical structures in text and databases

Structure Name – IUPAC name or common name

1,3,7-trimethylpurine-2,6-dione

CAS RN – Chemical Abstracts identifier

58-08-2

PubChem ID – PubChem Compound ID

CID: 2519

InChIKey – Short representation of InChI

InChIKey=RYYVLZVUVIJVGHH-UHFFFAOYAW

InChI – IUPAC International Chemical Identifier

InChI=1/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3
SMILES structure format

Positive: Good for storing structures in single line
Fast text based search possible; human readable

Negative: Many different SMILES codes exist
SMILES for same structure can be different (canonical or unique SMILES needed)

All those SMILES codes represent caffeine
[c1[n+][CH3]][c][c][2[c][n+][1][CH3]][n][cH][n+][2][CH3]][O-]][O-]
CN1C(=O)N(C)C(=O)C(N(C)C=N2)=C12
Cn1cnc2n(C)c(=O)n(C)c(=O)c12
Cn1cnc2c1c(=O)n(C)c(=O)n2C
N1(C)C(=O)N(C)C2=C(C1=O)N(C)C=N2
O=C1C2=C(N=CN2C)N(C(=O)N1C)C
CN1C=NC2=C1C(=O)N(C)C(=O)N2C

Caffeine SMILES Source InChI FAQ
SDF/MOL structure format

Positive: established standard format; good for storing structures safely
 can store 3D structure; can store metadata (boiling points, toxicity, mass spectra)

Negative: large file size, need compression

```
OpenBabel02240823422D
1  0  0  0  0  0  0  0  0  0 999 V2000
  0.0000  0.0000  0.0000 C  0  0  0  0
M  END
$$$$

OpenBabel02240823422D
2  1  0  0  0  0  0  0  0  0 999 V2000
  0.0000  0.0000  0.0000 C  0  0  0  0
  0.0000  0.0000  0.0000 C  0  0  0  0
  0.0000  0.0000  0.0000 C  0  0  0  0
1  2  1  0  0  0
M  END
$$$$

OpenBabel02240823422D
3  2  0  0  0  0  0  0  0  0 999 V2000
  0.0000  0.0000  0.0000 C  0  0  0  0
  0.0000  0.0000  0.0000 C  0  0  0  0
  0.0000  0.0000  0.0000 C  0  0  0  0
  0.0000  0.0000  0.0000 C  0  0  0  0
1  2  1  0  0
2  3  1  0  0
M  END
$$$$
```

Creator

Coordinates for 3D

Connection of atoms
CML structure format

Positive: Open Standard format; good for storing structures safely
machine readable

Negative: huge files; redundant information; needs compression

<?xml version="1.0" ?>
<molecule id="m1">
 <atomArray>
 <atom id="a1" elementType="C"
 x2="2.6673582436560714" y2="0.3080000000000006" />
 <atom id="a2" elementType="C"
 x2="1.3336791218280362" y2="-0.4619999999999997" />
 <atom id="a3" elementType="C"
 x2="4.440892098500626E-16" y2="0.30800000000000016" />
 <atom id="a4" elementType="C"
 x2="-1.3336791218280348" y2="-0.4620000000000002" />
 <atom id="a5" elementType="O"
 x2="-2.6673582436560705" y2="0.3079999999999997" />
 </atomArray>
 <bondArray>
 <bond atomRefs2="a1 a2" order="1" />
 <bond atomRefs2="a2 a3" order="1" />
 <bond atomRefs2="a3 a4" order="1" />
 <bond atomRefs2="a4 a5" order="1" />
 </bondArray>
</molecule>
Tools for chemical structure conversion

Example: Free OpenBabel – can handle around 100 formats

OpenBabel is community developed (PC, LINUX, MAC)
See also ChemAxon molconvert
Handling molecules on your PC – Instant-JChem

Best way to handle structures on your PC/MAC
Up to one million molecules ok on slow PC

Download Instant-JChem
The Last Page - What is important to remember

There are different exchange formats for mass spectral data
→ netCDF, JCAMP, mzXML

Metadata must be stored together with mass spectra
Mass spectra should be published in machine readable format (not on paper)
Open Data formats for mass spectral data (in XML) are important

There are different exchange formats for chemical structures
→ SMILES, SDF, MOL, PDB, InChIkey, PDB, CML

Open Data formats and identifiers for chemical structures are important
Tasks (30 min):

1) Install BioClipse (MAC/PC/LINUX) and open some of the included JDX spectra or structures [LINK]

2) Install Instant-JChem (MAC/PC/LINUX) – create a local demo database and import the LMSD Structure-data file (SDF) [LINK]

3) For diligent students or proteomics PhD candidates:
 goto http://www.ms-utils.org/wiki/pmwiki.php/Main/SoftwareList
 http://www.proteomecommons.org/tools.jsp
 http://tools.proteomecenter.org/software.php
 http://ncrr.pnl.gov/software/
 and install one viewer or one visualizer software for MS data.

 Additionally explain what dta, mgf, pkl files are.
Literature (15 min):

Reporting standards for Metabolomics

The HUPO proteomics standards initiative - easing communication and minimizing data loss in a changing world
Used Links

http://www.bioinformaticssolutions.com/products/peaks/proteinID.php
http://geoffhutchison.net/files/BabelTalk04.pdf
http://www.google.com/search?hl=en&q=smiles+sdf+smarts+sdf+ppt&btnG=Search
http://wwmm.ch.cam.ac.uk/inchifaq/