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Metabolomic analysis aims at the identification and quantitation
of all metabolites in a given biological sample. Current data
acquisition and network analysis strategies are classified on
the basis of pathway elucidation and characteristics of
theoretical networks. The development of metabolomic
methods and tools is progressing rapidly, but an understanding
of the resulting data is limited owing to a fundamental lack of
biochemical and physiological knowledge about network
organization in plants.
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Abbreviations
ECD electrochemical detection
GC/MS gas chromatography/mass spectrometry
IR infrared spectroscopy
LC/MS liquid chromatography/mass spectrometry 
MS mass spectrometry
NMR nuclear magnetic resonance
RPLC reverse-phase liquid chromatography
UV ultraviolet

Introduction
Now that plant genomes have successfully been
sequenced and (partially) annotated [1••,2], functional
genomics has become a focal point for many research
efforts. For Arabidopsis genes, over a third cannot be 
annotated by homology to genes in other organisms, and
roughly 90% have not yet been experimentally investigated.
Moreover, to see interactions between genes and gene
products [3] (i.e. mRNA [4,5], proteins [6,7] and metabo-
lites) and to look at their biological roles under different
environmental situations, classical gene-by-gene approaches
are not adequate. Much attention has been paid to tran-
script and protein profiling; however, for the rapid and
statistically sound generation of interaction networks,
these methods may be too slow and too expensive to be
applied in large genomic studies [8•]. Furthermore, the
underlying hierarchical paradigm of ‘genes’ as primary
actors and ‘gene products’ as unwilling victims is question-
able, because the regulation and control of metabolic
fluxes may occur on all levels, as has been shown in a case
study for the regulation of glycolysis [9••].

Despite extensive knowledge of fundamental metabolic
processes, the mechanisms of physiological modulation
over short and extended time intervals in response to
changing environmental conditions remain difficult to

understand [10••]. What is more, the pure existence of
some plant metabolites such as trehalose [11] still puzzles
us. Correspondingly, investigation of metabolic network
regulation upon genetic or environmental perturbations
may be viewed as a necessity for pathway discovery and
functional genomics. There is a long tradition of, and
extensive knowledge about, metabolite analysis. In fact,
metabolite analysis can be better understood by distin-
guishing among levels on the basis of its objectives [12].
Four levels can be identified. First, there is metabolite 
target analysis, which utilizes specialized protocols for the
analysis of difficult analytes such as phytohormones.
Second, metabolite profiling aims at quantitation of several
pre-defined targets (e.g. of all metabolites of a specific
pathway or a set of metabolites typical for different 
pathways). Third, metabolomics has the ultimate goal of
unbiased identification and quantitation of all the metabo-
lites present in a certain biological sample from an
organism grown under defined conditions. Fourth, there is
metabolic fingerprinting, which, instead of separating 
individual metabolites by physical parameters, focuses on
collecting and analyzing data from crude metabolite 
mixtures to rapidly classify samples. Among these four
approaches, metabolomics seems to be best suited for
investigation of metabolic networks, because it focuses on
quantifying individual metabolites without having a bias
concerning the choice of targets to be analyzed, as in
metabolite profiling. Therefore, this review seeks to
answer the question: are current strategies and methods of
data acquisition and network computation sufficiently
developed to adequately analyze and understand
metabolomic networks?

Metabolomic data acquisition
The number of metabolites present in the plant kingdom
is estimated to exceed 200 000. Therefore, metabolomic
approaches must apply adequate tissue sampling, homo-
genization, extraction, storage, and sample preparation
methods to maintain an unbiased process. Currently, no
comprehensive comparisons of extraction techniques have
been published that show high reproducibility, robustness,
and recovery for all classes of compounds. For example,
quite often, multiple components from homogenized tissues
are extracted using alcohols or water/alcohol mixtures
[13,14], but no systematic and rigorous validation [15••]
has been published for extremes in plant tissues (such as
Arabidopsis roots, strawberry fruits or pine needles). The
same is true for other extraction techniques such as pres-
surized liquid extraction [16], supercritical fluid extraction
[17–19], sonication [20], subcritical water extraction 
[21], microwave techniques [22] or pervapouration [23].
Additionally, it is quite unclear which factors most affect
robustness, which is defined by minimal analytical errors if
protocols are carried out under slightly altered conditions.
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Such alterations may include subtle differences in extraction
times, temperatures, solvent compositions and qualities,
staff skills, tissue/solvent ratios, and others, with the potential
to cause severe problems in reproducing results in different
biological laboratories.

Numerous techniques exist for metabolite detection. It is
questionable if data acquisition of a single physical parameter
can fulfil the minimal requirements of metabolomic
approaches, that is, comprehensiveness, selectivity, and 
sensitivity. Mass spectrometry (MS) seems to be the primary
candidate to fulfil these criteria, as many papers have shown
its suitability for metabolite detection in complex matrices
[24••,25]. However, it is well known that gas chromatography/
mass spectrometry (GC/MS), for example, is hardly applica-
ble for organic diphosphates, cofactors or metabolites larger
than trisaccharides. Electrospray or chemical ionization inter-
faces in liquid chromatography/mass spectrometry (LC/MS)
result in bad ionization efficiencies for some metabolite
classes such as carotenoids, hence limiting sensitivity and
universality for metabolomic purposes. This lack of compre-
hensiveness is even worse if crude mixtures are not
chromatographically separated before MS. The effects of ion
suppression owing to matrix effects are well known to mass
spectrometrists [26•,27], and these can be resolved only par-
tially by the reduction in size of liquid droplets [28]. Apart
from the problem of isomer distinction, such matrix effects
invalidate any approach to large-scale pathway elucidation or
metabolic reconstruction that fails to utilize chromatography
or other means of physical pre-separation before metabolite
detection. Instead, direct-infusion MS is ideally suited for
the high-throughput classification of sample origins, as any
matrix difference will have immediate and large effects in
distinct mass spectra [29•,30] and ion abundances.

For the reasons given above, chromatography is therefore a
prerequisite for pathway elucidation. Separation efficiency is
roughly 10-fold better in capillary GC compared with regular
LC columns. Therefore, more attention to chromatography
must be paid in LC than in GC applications. Reverse-phase
liquid chromatography (RPLC) of nonpolar organics is the
classic and well-established means of separation before 
MS, but it regularly fails for ionic or highly polar metabolites.
For analysis of oligosaccharides and sugar nucleotides in 
phloem exudates, LC/MS coupling has been achieved by
hydrophilic interaction chromatography, resulting in better
peak shapes compared with normal phase LC [31]. Hence,
an LC-LC coupling of different chromatographic columns
before metabolite detection seems to be a requirement for
truly metabolomic approaches; however, no method has yet
been developed that is as successful as coupling ion
exchange to RPLC in the analysis of peptide mixtures [32••].

By extending this argument, it is clear that GC/MS and
LC-LC/MS approaches have intrinsic biases against certain
classes of compounds. Which other types of detection
could lend a hand to MS? To this end, electrochemical
detection (ECD), nuclear magnetic resonance (NMR),

infrared (IR), ultraviolet (UV) or fluorescence spectroscopies
may be applied. UV and fluorescence detection are well-
known, non-destructive tools for metabolite target analysis
or for profiling selected classes of compounds such as
amines [33], isoprenoids [34] or unsaturated fatty acids
[35]. Weaknesses of MS could further be complemented
by applying coulometric electrochemical array detectors,
which have been shown to be powerful and sensitive
detectors of carotenoids [36], polyphenols [37], flavonoids,
and others. Notably, this approach also enables the distinc-
tion of metabolite isomers [38] from spectral information,
which is regularly hard to do by MS. Alternatively, IR and
NMR spectroscopy might be considered; however, these
approaches share the problem of lacking sensitivity for
multiparallel analysis of hundreds of metabolites for gen-
eration of large metabolic networks. Nevertheless, NMR
spectroscopy has high potential to unravel metabolic fluxes
in branched, short pathways, if carried out together with
isotope labeling and metabolic flux balancing calculations
[39,40]. In addition, NMR spectroscopy [41] has been
shown to have high discriminatory power on the level of
metabolic fingerprints, for example, for the rapid assess-
ment of the mode of action of plant protectants [42•].

If a combination of LC-LC and different detectors could
potentially be so powerful, the parallel use of GC/MS might
be questionable. Right now, however, GC/MS may still be
viewed as the gold standard of metabolomic techniques due
to the high separation power of GC and, more importantly,
the better deconvolution algorithms [43•] that are available
for classical quadrupole mass spectrometers or novel time-
of-flight instruments [44]. Correspondingly, the parallel use
of GC/MS and an LC-LC/UV/ECD/MS method could be
expected to comprehensively cover plant metabolomes,
allowing accurate identification and quantitation of plant
metabolites for network computation (Figure 1).

Metabolic networks
Ideally, metabolomic data should accurately describe 
physiological processes as responses to developmental,
genetic or environmental changes. However, some theoretical
considerations limit direct interpretation of metabolic 
networks generated from metabolic snapshots. First, any
subcellular compartmentalization is lost in the process of
sample preparation. Although mRNA or protein expression
levels can sometimes be ascribed to plant compartments on
the basis of their target sequences, there is a high degree of
uncertainty about the actual location of metabolites, many
of which may occur simultaneously (and for potentially 
different purposes) in different locations and in varying
amounts. Therefore, at best, metabolomic information can
be interpreted on the multicellular, tissue or organ level. If
metabolite analysis of subcellular compartments is the goal,
large amounts of tissue must be used for the parallel 
determination of enzyme activities for ascribing cellular
compartments to density fractions [45]. Because plant
metabolomes are so complex, many, if not most, of the
detected metabolites will remain structurally unidentified
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until being elucidated by de novo identification [46], which
is much more difficult than the identification of transcripts
or proteins. Finally, the question arises of how to correlate
metabolite levels under different situations, if they only
relate to multiple steady-states without any kinetic experi-
mental design that could guide interpretation. Most often,
average metabolite levels are used for deducing novel
insights into plant physiology. This strategy again results in
a loss of information, however, as metabolomic data from
individual snapshots can be regarded to be as reliable as
proven by the initial method validation tests. Any variation
found in a homozygous plant population therefore indicates
responses to subtle differences in plant development or
physiology for each individual plant. This variation must
have biological causes reflecting the flexibility of metabolic
networks in the studied populations. It can, therefore, be
used to calculate pathways by comprehensive pair-wise

metabolite correlation plots. This idea was pursued by Arkin
and colleagues [47] who demonstrated the deduction of
pathways using only a few metabolites in a test case study of
a kinetic experiment. Such correlations have also been
observed in metabolite profiles from Arabidopsis leaves [48]
and potato tubers [49], indicating that pathway discovery
from a multiplicity of individual snapshots should be feasible
despite a strong overlap of hundreds of simultaneous reactions
and processes [50••]. Correspondingly, the observation of
such fixed co-regulation of metabolite levels may force us to
review the concept that metabolite ratios rather than
metabolite levels are homeostatically regulated [51]. In the
1990s, the concept of ‘metabolic control analysis’ [52,53••]
was extended by Hofmeyr [54] to incorporate metabolite 
co-response coefficients [54], which is essentially identical
to metabolite:metabolite correlations if logarithmic data
transformations are applied. If such correlation networks are
visualized [48], differences to networks derived from other
populations or static networks may be searched to generate
novel hypotheses about biochemical pathways and gene
functions. But, to which static networks could these
metabolite co-regulation plots be compared? On the one
hand, full genomes may be used to reconstruct what is meta-
bolically feasible for each organism. On the other hand,
however, these static networks are necessarily incomplete as
genes may have more than one function, many genes do not
show high homology to known enzymes, and homology
itself does not always imply a coding for functionally related
enzymes. Despite these constraints, stoichiometrically feasible
metabolic networks could be computed for a variety of
organisms. Such networks would enable researchers to 
predict the effect of knockout mutations [55••] and novel
metabolic pathways [56••]. Besides allowing comparison
with experimentally established metabolic networks, the
inherent characteristics [57,58] of topological metabolic 
networks could be investigated to compare structural differ-
ences in network organization and thus improve our
understanding of key metabolites [59] and the effects of 
random mutations [60]. Theoretical and experimental net-
works both reveal enormous complexity. This finding might
entice researchers away from the dogma of ‘fixed’ metabolic
pathways to a view that considers ‘preferred’ routes through
biochemical networks [61•] as pathways that might be
changed in response to altered conditions or needs. Such a
view could lead to a better understanding of silent muta-
tions or ‘failed’ antisense approaches for which no
phenotypical change is observed even when the expression
of important genes is down regulated.

Conclusions
Improvements in current metabolomic data acquisition
technologies can be foreseen, especially for methods based
on liquid chromatography. The first steps have been made
to generate biological hypotheses from metabolomic
datasets, however, such steps must be extended by better
use of statistics to gain significant, rather than clustered,
information. An understanding of metabolic networks
might be further improved by an integration of static

Figure 1

Proposed scheme for comprehensive metabolomic data acquisition.
*Plots need to be randomized according to the question under study
(e.g. by latin square design). †HILIC (hydrophilic interaction
chromatography) is a variant of normal phase chromatography, suitable
especially for highly polar metabolites. 
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enzyme stoichiometry networks and inherent network
characteristics. Eventually, the combination of metabolomic
analysis with other profiling technologies, especially pro-
teomics and integrative techniques like metabolic control
analysis [62], could enable pathway discovery and aid the
evaluation of changes in plant networks engendered by
genetic or environmental perturbation.
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