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ABSTRACT
Motivation: Metabolomics is a post genomic technology
which seeks to provide a comprehensive profile of all the
metabolites present in a biological sample. This comple-
ments the mRNA profiles provided by microarrays, and
the protein profiles provided by proteomics. To test the
power of metabolome analysis we selected the problem
of discrimating between related genotypes of Arabidop-
sis. Specifically, the problem tackled was to discrimate be-
tween two background genotypes (Col0 and C24) and,
more significantly, the offspring produced by the cross-
breeding of these two lines, the progeny (whose genotypes
would differ only in their maternally inherited mitichondia
and chloroplasts).
Overview: A gas chromotography - mass spectrometry
(GCMS) profiling protocol was used to identify 433
metabolites in the samples. The metabolomic profiles
were compared using descriptive statistics which indicated
that key primary metabolites vary more than other metabo-
lites. We then applied neural networks to discriminate
between the genotypes. This showed clearly that the two
background lines can be discrimated between each other
and their progeny, and indicated that the two progeny
lines can also be discriminated. We applied Euclidean
hierarchical and Principal Component Analysis (PCA) to
help understand the basis of genotype discrimination.
PCA indicated that malic acid and citrate are the two
most important metabolites for discriminating between
the background lines, and glucose and fructose are two
most important metabolites for discriminating between
the crosses. These results are consistant with genotype
differences in mitochondia and chloroplasts.
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INTRODUCTION

Post genomic molecular biology is being driven by
new, and highly powerful experimental techniques which

enable the large-scale, and parallel interrogation of cell
states under different stages of development and defined
environmental conditions. Such analyses may be carried
out at the level of transcription using hybridisation-arrays
– the transcriptome (Baldwin et al. (1999); Ruan et al.
(1998)). Similar analyses may be carried out at the level
of translation to define the proteome (Santoni (1998)).
Most recently, the metabolome (the cells small molecule
complement) has risen to prominance as an essential
component in cell analysis (Raamsdonk et al. (2001)).

The goal of metabolome research is to be able to provide
a comprehesive profile of all the metabolites present in a
biological sample. Analysis of cells at the metabolic level
has a number of advantages over the more conventional
transcriptome and proteome analyses (Tretheway et al.
(1999); Katona et al. (1999); Adams et al. (1999)):

� Changes in gene and protein expression can cause
amplified changes in metabolism, making detection
easier.

� Metabolome technology does not require the complete
genome sequence or an large EST databases, as do
many transcriptome and proteome approaches.

� There are fewer metabolite types than genes or pro-
teins: in the order of 1000 per organism compared
to several thousand genes for the smallest bacterial
genomes and 10’s of thousands of genes for complex
multi-cellular organism.

� The technology is more generic, as a given metabolite
- unlike a transcript or protein - is the same in every
organism.

To test the power of metabolome analysis we selected
the problem of discriminating between related genotypes
of Arabidopsis. This problem is of clear biological inter-
est, with applications in plant breeding and ecology; and
has the data analysis advantage of providing a clear cut
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measure of success or failure - unlike data analysis based
purely on clustering. Specifically, the problem tackled was
to discriminate between to background lines of Arabidop-
sis thaliana (Col0 and C24) and their first generation (F1)
progeny (C24 x Col0 and Col0 x C24). This problem is
interesting because although previous work has indicated
that it is possible to discrimate between different lines of
Arabidopsis using metabolomics (Fiehn et al. (2000)), dis-
crimation between different types of interbred progeny is
more biochemically focussed, and far more challenging.
The two forms of F1 (first generation) progeny only dif-
fer by which background line was male and which female.
This means that they are genetically identical (neglecting
any possible imprinting) except for their maternally inher-
ited mitichondria and chloroplast genomes. The bioinfor-
matic questions therefore are:
� Can the background genotypes be discriminated?

� Can the F1 progeny genotypes be discriminated from
the parents and themselves?

� Can the resuts of any discrimination method be
biologically interpreted?

From the previous work published (Fiehn et al. (2000)),
it is expected that the answer to the first of the above
questions to be positive, but whether the two related,
but differentially inherited progeny genotypes can be
separated is the focus of this study.

MATERIALS AND METHODS
Plant Growth and Harvest
Two background lines of Arabidopsis thaliana (Col0 and
C24) were crossed to produce two F1 progeny lines with
differing patterns of maternal inheritance, one F1 progeny
was Col0 x C24, and the second progeny was C24 x Col0.
The seeds of the parent controls were derived from manual
self-fertilisation of the parent lines in order to control
for potential effects (seed size) caused by the crossing
procedure.

Seeds were dispersed onto moist standard soil (Einheit-
serde GS90, Gebrüder Patzer, Sinntal-Jossa, Germany)
and cultivated for 10 days (16h day, 145 	 E fluorescent
light Philips TLD36W/830 
 TLD36W/840, 20 � C,
75% rel. humidity/ 8h night, 6 � C, 75% rel. humidity).
Seedlings (across the different populations synchronously
germinated seedlings were selected) were than picked into
individual pots (with standard soil: Einheitserde GS90,
Gebrüder Patzer, Sinntal-Jossa, Germany) and cultivated
under a day/night regime of 16h day, 120 	 E fluorescent
light Philips TLD36W/830 
 TLD36W/840, 20 � C, 60%
rel. humidity / 8h night, 16 � C, 75% rel. humidity until
flowering. Leaves were harvested from plants with a
primary inflorescence of 5 cm. All plants were harvested

at Boyes stage 6.0 - 6.5, weighed and frozen in liquid
nitrogen.

Leaf Extract Preparation
About 100mg (fresh weight) of frozen ground tissues of
Arabidopsis leaves were extracted as previously reported
(Fiehn et al. (2000b)). 80% aqueous methanol at 70 � C and
chloroform at 37 � C were used, combined, and phase sep-
arated by addition of water and subsequent centrifugation.
The lipophilic phase was not investigated in this study. The
polar phase was dried down in a SpeedVac concentrator.
Metabolites were subsequently derivatized by methoxima-
tion and trimethylsilation prior to analysis into the Gas
Chromatography Mass Spectroscopy machine (GC-MS)
as described in (Fiehn et al. (2000b)).

Data Acquisition and Pre-processing
GC-MS chromatograms are potentially information-rich
entities of some 3.24 MB, with mass spectral information
and ion intensities for eash of the 0.5s long scans that
are acquired over a 1200s chromatographic run time.
This raw form of data is not suitable for data analysis
and needs to be refined, to extract useful information
from the large quantity of raw data. Our data acquisition
and pre-processing procedure was designed to extract the
maximum reliable information from the chromatograms.
In metabolomic studies we aim to identify as many
metabolites as possible (not just a pre-defined set based on
background knowledge of their biological importance as
has been typical of studies of metabolites). This requires a
semi-automated data analysis approach.

The data analysis process begins with the selection of a
reference chromatogram that is typical of the whole set of
Arabidopsis analyses. This is based upon visual inspection
off the number of compounds and the presence of low
abundant metabolites such as organic phosphates and and
certain di- and trisaccharides. Since an important objective
of this study was to investigate metabolic difference
between F1 and parental lines, and to inspect differences
between both F1 lines in order to look for mitochondrial
inheritance, an F1 sample was chosen as reference for both
the lipophilic and the polar chromatograms.

The second part of the data pre-processing was based
on the automated mass spectral deconvolution and iden-
tification system AMDIS developed by Steven Stein
(Stein (1999)) and implemented for a variety of MS
formats; including the ThermoFinnigan Quadrupole mass
spectrometer used for this study. This deconvolution
software enables finding of peaks in an unbiased way
without prior knowledge about their mass spectral charac-
teristics and chemical nature. Since it was developed for
detecting chemical warfare agents, the software suffers
from several weaknesses for automated quantitation of a
multitude of metabolites in high throughput applications.

2



For example, depending on the threshold used, either too
many false positive or false negative peak findings are
generated. Further, quantitation in AMDIS uses the sum
of all deconvoluted ion traces for each peak (dTIC). It is
therefore prone to cause problems for all minor peaks that
regularly contain noise ions from chemical background
or coeluting major peaks. Finally, retention time shifts
after column changes have not adequately been taken into
account by the software developers. For these reasons,
AMDIS deconvolution was only used for finding all peaks
in the reference chromatograms.

This step was followed by use of a script written
in MassLab for identifying those peaks that could be
confirmed to exceed signal-to-noise ratios (S/N) of 5 and
that had peak widths of at least 5s. For each of the
newly defined target peaks, dedicated ions were chosen at
high masses for the MassLab routine quantitation method.
Using this procedure 433 peaks were positively detected
in the polar phase of a single Arabidopsis leaf extract. All
other chromatograms were then matched against this list
of pre-defined target analytes. Peak areas were normalized
to mg fresh weight and to the internal standard ribitol.
Since very low thresholds were used for mass spectral
quality in the MassLab routine, false negative results were
minimized. A number of peaks that were detected in the
reference chromatograms were apparently absent in the
sample chromatograms. This mainly occured because the
comarison peaks had a lower S/N than 5. Therefore, the
true peak areas for these peaks were somewhere between
zero and the detection limit. The value of 0.000001 was
given to such peaks.

It should be noted that use of a reference chromatogram
has the data analysis advantage of producing examples all
with the same number of attributes. The data for analysis
is therefore a simple 2D matrix, enabling the data analyst
to choose from many statistical and machine learning data
analysis methods (both simple and complex). Complex
data structures (where different objects have different
numbers of attriibutes) can often require the use of more
complex data analysis approaches such as ILP (Muggleton
et al. (1998)).

RESULTS
The data comprised eight examples of each of the four
genotypes; with each sample originating from a separate
plant, meaning only one replicate object in the dataset
per plant. These were numbered: 1-8 = Col0 parental
genotype, 9-16 = C24 parental genotype, 17-24 = Col0
x C24 F1 progeny, 25-32 = C24 x Col0 F1 progeny. In
the reference GC-MS chromatogram 433 peaks corre-
sponding to metabolites were identified; 201 of these
could be identified at some detail, 92 as molecular type
(e.g. “alanine”, “6-hydroxynicotinic acid”) and 109

by chemical property (e.g. “sugar alcohol”, “aromatic
compound”). The remaining samples were labelled with
a unique identification number. Each peak had a real
valued quantity. This resulted in a processed dataset of
433 x 32 real numbers. No initial preprocessing of the
data was carried out in terms of data reduction. Whilst
some variable selection could have removed irrelevant
variables, it was undesirable to do this when, in this case,
there was no prior information concerning the relevance
of each variable.

Descriptive Analysis
The first step in the analysis was to apply some standard
descriptive statical methods to the data. This was done
using the R statistical package (www.r-project.org).
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Fig. 1. The Variance of Each Metabolite for Each Genotype

Perhaps the most interesting result of this is shown in
Figure 1. This displays a plot of the variance of each
identified metabolite. Note that the highest variance occur
within the first � 100 peaks in the data. The peaks are
listed by name in the original data, meaning that in Figure
1, the highest variances are associated with those peaks
that are well defined and have a compound label associated
with them. This is further shown in Table 1, where the
average variance for each class of compound label is
shown. The identified metabolites for each genotype have
an average variance at least 10 times those of less well
defined peaks.

The probable explanation of this is that these identified
metabolites are generally core primary metabolites, and
as such their quantities are likely to be affected by many
genetic changes. This would appear to be consistant with
the predictions of Metabolic Control Analysis (MCA)
(Mendes (1997); Cornish-Bowden (1995); Mendes and
Kell (1998)).
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Table 1: The Average Variance of Each Metabolite for
Each Genotype

Label(name) Label(property) Label(number)
Col0 0.01 0.00022 0.000367
C24 0.037 0.0005 0.0013
Col0xC24 0.019 0.00078 0.00049
C24xCol 0 0.014 0.001 0.00052

Each metabolite peak (column) in the data was plotted as
a simple bar graph so that the relative peak area for a par-
ticular metabolite may be compared between genotypes.
433 bar graphs were plotted in total (not shown) and ex-
amined visually. A number of metabolites showed marked
differences in measurement across genotypes, and as de-
scribed above, this was even true for key primary metabo-
lites. 27 metabolite peaks in the reference spectrum were
not measured for the Col0 parent (either due to the com-
pound not being present or in such low quantities as to
not be detected), 14 were absent from the C24 parent, and
only one metabolite peak was not measured for both F1
genotypes. Of those absent from the parental strains, per-
haps the most suprising was the absence of a derivative of
glucose-6-phosphate, as this molecule is part of a pool of
intermediates in which the reactions of carbohydrate syn-
thesis and degredation converge and interact with other
pathways (Dennis et al. (1990)).

Figure 2, plots a and b show the distribution of raffinose
and galactose respectively. These two metabolites are
further examples of some highly discrminant metabolite
measurements. Raffinose is a trisaccharide commonly
found in higher plants in the phloem. It is synthesized by
the attachment of a D-galactose to the C6 position of the
D-glucose moiety in sucrose. These sugars are important
in the long distance transport of carbon from source to sink
(Greenberg (1967)).

Genotype Discrimation
Following the preliminary analysis of the data using
descriptive statistics we sought to discriminate between
the four genotypes. Use of linear discrimination was
ineffective at this, we therefore used the standard neural
network approach of back-propagation. This was done
using the freely available Java software package WEKA
(Version 3.2, University of Waikato, New Zealand,
http://www.cs.waikato.ac.nz/ ml/weka/). A multilayered
percepton network with sigmoid units was trained using
32-fold (leave one out) cross validation (Witten et al.
(2000).

Because the number of examples in the data is limited,
to reserve some of the examples to form an independant
test set could mean that the model does not learn from a
truly representative training subset. Leave one out cross
validation involves the ommission of each data object in
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Fig. 2. Comparison of the Relative Peak Area of Two Example
Metabolites between Genotypes (r.p.a = Relative peak area)

Table 2: Confusion Matrix of the Neural Network
Classifier

A B C D 
 classified as
8 0 0 0 A = Col0
0 8 0 0 B = C24
0 0 5 3 C = Col0 x C24
0 0 3 5 D = C24 x Col0

turn from the training set, and using all others to train the
model. The model is then judged on its ability to classify
the remaining object. This is repeated for all objects in
the data. Use this form of cross validation ensures that the
maximum amount of data is used for the training of the
model, which is particularly important when analysing a
small number of samples.

The neural network trained in this way correctly classi-
fied 26 out of the 32 examples in the data. The confusion
matrix for the classifier is shown in Table 2.

Of the parental strains, all of the Col0 examples were
correctly classified, as were the C24 parental examples.
From these results it is clear that it possible to discriminate
between the two parental lines and between the parental
lines and the two F1 crosses. However, it is less clear if
the two F1 crosses can be discriminated. To quantitatively
test this we applied a binomial test, i.e. if the discrimant
was random what is the probability of getting 10 correct
predictions and 6 wrong? The answer is P = 0.27, or
around 1 in 3. Although this value is far higher than
normally considered significant in normal tests, it must be
taken into account that the sample size of 16 is very small.
We therefore believe that it is fair to conclude that balance
of evidence favours the hypothesis that discrimation is
possible even for the case of the subtle differences between
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the different F1 genotypes Col0 x C24 and C24 x Col0.

Distance metrics between examples
To investigate further the differences in the metabolome
between genotypes we carried out a cluster analysis of the
data (this is an unsupervised approach in contrast to the su-
pervised approach taken with the neural network (Everitt
(1974)). This was done because we wished to have a bet-
ter biological understanding of which metabolites were in-
volved in the discrimination and it is notoriously difficult
to directly interpret the weights in a multi-layer non-linear
neural network.

The majority of the clustering algorithms undertake an
initial calculation to produce a similarity or distance ma-
trix between entities in the data. To calculate this we used
the same data as for the variance calculations. Various dis-
tance (or dissimilarity) metrics were investigated (Duda
et al. (1973); Jain et al. (1988)) and they all produced
broadly similar results. We have therefore chosen to illus-
trate these results using the the most commonly used dis-
tance metric, that of Euclidean distance. Objects are com-
pared in a pairwise fashion to calculate the distance. The
Euclidean distance describes a circular population bound-
ary in two dimensions, and a sphere or hyper-sphere in 3
or more dimensions. If a particular population or cluster
does not have a hyper-spherical boundary (it may for ex-
ample have an elliptical shape along a particular axis) then
this distance measure may fail to group objects correctly.
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Fig. 3. Distances between each object in the dataset, according to
the Euclidean distance metric. 1-8 = Col0 parental genotype, 9-16
= C24 parental genotype, 17-24 = Col0 x C24 F1 progeny, 25-32 =
C24 x Col0 F1 progeny

Calculation of these distance metrics allows the plotting
of a dendrogram, or hierarchical tree, which illustrates
how far apart (or dissimilar) objects are from each other.

Dendrograms may also be employed to cluster the data
by terminating the tree hierarchy at a desired threshold.
Figure 3 shows an example of a dendrogram produced
by the calculation of the Euclidean distance. It is shown
in this dendrogram that the parental Col0 and both F1
progeny group more tightly together, i.e. all members
of the group are in close proximity according to the
Euclidean distance. The C24 genotype, on the other hand
were more distant, both from other genotypes and other
members of that group. However there is a significant
outlier in the parental groupings. One of the Col0 objects
is found to be ’nearer’ to the C24 objects. Of the F1
progeny, five of the Col0 x C24 crosses lie next to each
other, but there is no other significant grouping of the F1.

Principal Components Analysis
To investigate further the role of the different metabolites
in discrimination we carried out a principal component
analysis (PCA) of the data. This unsupervised multivari-
ate data analysis approach is apppropriate when it is be-
lieved that a function of many attributes (metabolites) is
involved in differences between examples. PCA is primar-
ily concerned with the transformation of a large set of
related variables into a new, smaller set of uncorrelated
variables (Joliffe (1986)). The new variables are termed
latent variables, or principal components (PCs). The PCs
attempt to express the maximum variation of the original
data. Each principal component may be thought of as an
axis in multi-dimensional space, and each object can then
be characterized by how far away it lies to a particular
axis. This calculation gives each object a score. The con-
tribution of each variable to a particular PC can also be
calculated. This gives each variable a weighting value or
loading for a PC. High positive or negative loading values
for a variable indicate a strong contribution to that PC.

The PCA algorithm used for the following analysis was
taken from the Statistics Toolbox of Matlab. The same data
that were used for the calculation of the distance metrics
were input to the PCA routine. From this analysis, the
first three PCs were examined in detail. Figure 4 illustrates
the individual and cummulative variance that is explained
by each of the first few PCs. 78% of the variation in the
original data is explained using the first three PCs alone.

As all the constructed PCs are orthogonal, the object
scores may be plotted against each other to represent the
distribution of the objects in the space. Figure 5 shows the
first 3 principal components plotted against each other,
giving rise to separate clusters for each of the parental
genotypes. However, one of the Col0 samples lies much
closer to the C24 cluster, than to other Col0 objects. This is
consistent with the results gained from the distance metric
described in the previous section. It is also shown that five
of the Col0 x C24 samples cluster together, and of the
remaining F1 progeny, seven out of the eight C24 x Col0
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samples also form a loose cluster, but one which contains
the remaining Col0 x C24 samples.
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The contribution of each variable to the first PC is
illustrated in Figure 6. There are two variables whose
absolute loading values are much greater than any other
variable. These two lie at positions 38 and 74 of the
original data, and represent the relative peak areas for the
metabolites malic acid and citrate.

This prompted further study of the original measure-
ments was undertaken, firstly by returning to the descrip-
tive statistics carried out previously. Figure 7 shows a box-
plot for both metabolites for each genotype class. It is im-
mediately apparent that the citrate peak data for the Col0
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Fig. 6. The contribution of each variable (metabolite peak) to the
first principal component

parental line contains an outlier, which lies far outside the
remaining Col0 sample range. The value for this outlier
lies within the range of the citrate peak values for the C24
genotype. The presence of this one outlying value may ex-
plain the misgrouping of one of the Col0 samples by the
Euclidean distance measure. It may also be observed from
this boxplot that the range of values for both metabolites is
much wider in the C24 parent than for any other genotype
class.
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Fig. 7. Box plot of the relative peak area data for the metabolites
citrate and malic acid, for both parental and F1 progeny. The plot
shows the median, 25% quartile, 75% quartile and the range.

Examination of the loadings plots from the second
and third PCs (plots not shown) reveal other highly
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Table 3: The Variables with the Highest Absolute
Loadings in the First 3 PCs

PC 1 2 3

Malic acid Glucose meox 2 Glucose meox 2
Citrate Fructose meox 1 Threonine
Threonine Malic acid Galactose meox 1
Serine TMS 3X Fructose meox 2 Citrate
Raffinose Galactose meox 1 Malic acid
Galactose meox 1 Pyroglutamic acid Serine TMS 3X
Serine TMS 2X Raffinose Fructose meox 1

contributing single metabolite peaks. In the second PC,
two peaks labelled Glucose Meox 2 (a glucose derivative)
and Fructose Meox 1 (a fructose derivative) had the
highest contribution, whilst the same glucose derivative in
the third PC contributed over 50% more than any other
peak.

Further to the PCA carried out as previously described,
a similar analysis was undertaken using the F1 progeny
alone, to remove the variation due to the parental geno-
types. In the first PC of this analysis, the glucose derivative
had the highest loading value, contibuting 29% of the total
loadings values for all 433 variables. If a further PCA is
performed on just the parental data, malic acid and citrate
again contribute most highly to the clustering of the data
in the first PC.

It may be therefore inferred from the original PC
analysis of all data, that the first PC partions the parental
genotypes, and separates them from the F1, and the second
and third PCs discriminate between the F1 progeny,
using a glucose derivative as the major discriminating
metabolite.

Table 3 lists the metabolites with the highest loading
values for each principal component. It is observed that
many metabolites appear significant in more than one
PC, leading to nine individual metabolite peaks that are
identified as significant by the PCA analyis.

Malic acid and citrate are two key metabolites in the
TCA cycle, located within the mitochondrial matrix. Ser-
ine is also produced in the mitochondria, then is trans-
ported to the peroxisome for further processing. Raffinose
and galactose, as stated previously, are important sugars
in the transport of carbon in the phloem. Threonine is used
either for protein synthesis, or converted to isoleucine. The
enzymes involved in the synthesis and processing of thre-
onine, and related compounds are located in the chloro-
plast. Pyroglutamic acid is a component in the pathway
of glutathione metabolism (www.genome.ad.jp/kegg/, An-
derson et al. (1998)). Oxidised glutathione is suggested by
(Cohen (1993); Buchanan (1994)) to be associated with
the oxidation of key chloroplastic enzymes to their disul-
phide form in the dark. This is a form of reversible co-

valent modification which is extremely important in the
in light regulation of these enzymes, and photosynthetic
electron flow (Dennis et al. (1990)).

Glucose and fructose are two of the most commonly
occuring sugars in plants, having multiple roles within
the plant cell. However, chloroplasts have the key role
in producing glucose and fructose through photsynthetic
driven production of glyceraldehyde 3-phosphate, and
mitochondia have a key role in in removing glucose
through catabolism of pyruvate in the TCA cycle.

Therefore the results are consistant with the knowledge
that the only genetic differences are the maternally inher-
ited chloroplasts and mitichondria.

DISCUSSION
The comprehensive study of the metabolome of organisms
is just beginning. However, already it is clear that the
general approach has great potential to increase our
knowledge of the internal state of the biochemistry of
cells. Technological advances are still needed, both to
improve the sensitivity of the detection of metabolites,
and to characterise the chemical nature of the detected
metabolites. There is also a great need to be able to im-
prove the temporal resolution of detection methods. This
will be essential in moving to the goal of realistic in silico
models of cellular metabolism. In bioinformatic terms the
data presents numerous challenges. Our knowledge about
metabolites needs to be formalised into an ontological
structure - as as been done for other areas of biology
(Schulze-Kremer (1997)). This ontology must formalise
our knowledge both about the chemical structures of the
metabolites (hydrophobic, hydrophilic, acid, sugar, etc),
as well as their role in biochemistry (glycolysis, TCA cy-
cle, etc.). Once this knowledge is formalised it then needs
to be incorporated into automated data analysis methods.
Metabolomic data can then be integrated with other
forms of bioinformatic data: genomic, transcriptomic, and
proteomic to provide a comprehensive description of cells
and organisms.
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