
pubs.acs.org/JAFCPublished on Web 07/09/2009© 2009 American Chemical Society

J. Agric. Food Chem. 2009, 57, 6899–6907 6899

DOI:10.1021/jf9019322

Comparison of Gas Chromatography-Coupled Time-of-Flight
Mass Spectrometry and 1H Nuclear Magnetic Resonance

Spectroscopy Metabolite Identification in White Wines from a
Sensory Study Investigating Wine Body

KIRSTEN SKOGERSON,† RON RUNNEBAUM,‡, ) GERT WOHLGEMUTH,† JEFFREY DE ROPP,§

HILDEGARDE HEYMANN,‡ AND OLIVER FIEHN*,†

†Genome Center, University of California, 451 Health Sciences Drive, Davis, California 95616,
‡Department of Viticulture and Enology, University of California, One Shields Avenue, Davis,

California 95616, and §NMR Facility, University of California, Davis, California 95616.

)Current address: Department of Chemical Engineering, University of California, One Shields
Avenue, Davis, CA 95616

Metabolite profiles of white wines, including Chardonnay, Pinot gris, Riesling, Sauvignon blanc, and

Viognier varieties, were determined using both gas chromatography-coupled time-of-flight mass

spectrometry (GC-TOF-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR). A

total of 108 metabolites were identified by GC-TOF-MS, and 51 metabolites were identified by 1H

NMR; the majority of metabolites identified include the most abundant compounds found in wine

(ethanol, glycerol, sugars, organic acids, and amino acids). Compositional differences in these

wines correlating to the wine sensory property “body”, or viscous mouthfeel, as scored by a trained

panel were identified using partial least-squares (PLS) regression. Independently calculated GC-

TOF-MS and NMR-based PLS models demonstrate potential for predictive models to replace

expensive, time-consuming sensory panels. At the modeling stage, correlations between the

measured and predicted values have coefficients of determination of 0.83 and 0.75 for GC-TOF-

MS and 1H NMR, respectively. Additionally, the MS- and NMR-based models present new insights

into the chemical basis for wine mouthfeel properties.
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INTRODUCTION

One key sensory attribute of any wine is its body, or viscous
mouthfeel properties. Perceived body makes an important con-
tribution to the overall mouthfeel (tactile) perception of a wine
along with other mouthfeel sensations such as astringency, heat,
and carbonation (1); it is routinely described using terms ranging
fromwatery (absence of body) to light-, medium-, or full-bodied.
For white table wines, which lack the tannins responsible for red
wine astringency and the carbonation of sparkling wines, per-
ceived body is the major tactile sensation. Despite the importance
of body in defining and differentiating styles and qualities of
wines, its precise origins remain unclear. Prior work on the impact
of rheological properties on wine body has led to a partial
understanding of a few chemical constituents influencing this
sensory quality (2-6); however, a more comprehensive under-
standing of the chemical and physical properties related to wine
body remains to be determined. Ultimately, once compounds are
identified, viticultural and enological practices that influence their
concentrations can be elucidated and subsequently implemented
to target the desired sensory characteristics.

Human senses are composed in the brain by pattern recogni-
tion of different magnitudes of signals received at peripheral
receptors (7). Consequently, “mouthfeel” will not be able to be
explained by a single variable, but rather by a combination of
variables. Wine is a complex mixture, and global chemical
profiling techniques, such as metabolite profiling, could be
employed to expand the list of chemical constituents routinely
measured in wine samples.

Gas chromatography-coupled mass spectrometry (GC-MS)
and nuclear magnetic resonance spectroscopy (NMR) are the
two most frequently used tools for metabolite profiling; both
generate high-density, diverse chemical data sets, each with
specific advantages and drawbacks (8). NMR has been employed
in the characterization of both grapes and wines for purposes of
authentication and classification (9-11) and in investigation of
the chemical basis for the concept terroir (12). Recently, research-
ers have demonstrated the potential for 1H NMR applications in
monitoring primary and secondary fermentations (13). GC-MS
has been employed primarily for analyses of aroma compounds
and in the detection of spoilage compounds (14-16). At present,
no study reports independently curated metabolite lists for wines
using MS and NMR technologies or compares experimental
conclusions drawn from independently generated data for the
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purpose of a direct comparison of the two technologies with
regard to wine analysis.

Partial least-squares (PLS) regression has been successfully
used in food product analysis to interpret the results obtained by
sensory analysis (17-20) and allows for correlations to be
established between sensory attributes and other types of vari-
ables, such as metabolite data. Additionally, PLS regression can
be used to construct models that allow sensory characteristics to
be predicted from simpler laboratory measures. Analysis of the
wine metabolite data and sensory panel assessments using multi-
variate statistical methods could allow for the identification of a
suite of compounds that ultimately define the sensation of wine
body.

This study compares GC-TOF-MS- and 1H NMR-based
metabolite profiles of white wines, including Chardonnay, Pinot
gris, Riesling, Sauvignon blanc, and Viognier varieties. The goal
of this work is to identify compositional differences in these wines
which correlate to the wine sensory property “body”, or viscous
mouthfeel, using multivariate statistical methods. The feasibility
of developing a robust predictive model as a time- and cost-
effective alternative to obtaining sensory data is also explored.

MATERIALS AND METHODS

Reagents. Reference standards used in creating the GC-TOF-
MS library and all fatty acid methyl esters were purchased from Sigma
(St. Louis,MO), Fluka (Sigma-Aldrich), orAldrich (Milwaukee,WI). The
reference standard for inulobiose was a gift fromA. van Laere andW. van
den Ende (Katholieke University, Leuven, Belgium). Pyridine and
N-methyl-N-trimethylsilyltrifluoroacetamide with 1% trimethylchlorosi-
lane (MSTFAþ1% TMCS) were obtained through Thermo Scientific
(Rockford, IL). D2O (99.9%) was provided by Cambridge Isotope
Laboratories, Inc. (Andover, MA). Methoxyamine hydrochloride and
sodium 3-trimethylsilyl-2,2,3,3-d4-propionate (TMSP) were purchased
from Sigma-Aldrich.

Sample Preparation. Commercially available white wines (n=17)
representing six varieties, three vintages, andmultiple winemaking regions
were chosen for analysis and spanned an anecdotal range of wine body
styles from light- to full-bodied (Table 1). Samples were prepared by
reducing 1 mL of wine under vacuum (Vacufuge Concentrator, Eppen-
dorf ) by half to decrease both the ethanol andwater content. The reduced-
volumewine samples were thenD2O-exchanged twice with the addition of
500 μL of D2O followed by another concentration step (i.e., the H2O
content of final samples was minimally 25%). Wines were never concen-
trated more than 2-fold to prevent the formation of insoluble precipitates.

GC-TOF-MS Samples. Samples were prepared for injection using a
two-step methoximation-silylation protocol (21). Concentrated, deal-
coholized D2O-exchanged wine samples (1 μL) were dried under vacuum
(Labconco CentriVap), and then 10 μL of methoxyamine hydrochloride
(40 mg/mL pyridine) was added to the dried samples before they were
agitated at 30 �C for 90min.Following the addition of 90 μLofMSTFAþ
1% TMCS, samples were agitated for an additional 30 min at 37 �C. A
retention index marker mixture comprised of fatty acid methyl esters of
C8, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26, C28, and C30
linear chain lengths dissolved in chloroform at 0.8 mg/mL (C8-C16) or
0.4 mg/mL (C18-C30) was spiked into samples (2 μL). Samples were
prepared in triplicate and injected twice for a total of sixmeasurements per
wine, which were averaged prior to statistical analysis.

Acquisition of GC-TOF-MS Data. GC-TOF analysis was per-
formed on a 6890 gas chromatograph (Agilent Technologies) equipped
with a CIS 4 temperature programmable injector andMPS2multipurpose
sampler (Gerstel) and interfaced with a Pegasus IV time-of-flight mass
spectrometer (Leco). Automated injections and linear exchanges were
performed by theMPS 2 instrument. Injections (0.5 μL)were performed in
splitless mode (purge time of 25 s, purge flow rate of 40 mL/min). The
injector was programmed at an initial temperature of 50 �Cwith a 0.0 min
hold and then rampedup to a final temperature of 275 �Cat a rate of 12 �C/s
followed by a 3 min hold. Multibaffled glass linears were changed every
10 samples. Chromatographic separationwas performed onaRtx-5SilMS

columnwith a 10m integrated guard column [95%dimethyl/5% diphenyl
polysiloxane film; 30 m� 0.25 mm (inside diameter)� 0.25 μm d.f.
(Restek)]. The GC oven temperature program was as follows: initial
temperature of 50 �Cwith a 1min hold followedbya 20 �C/min rampup to
330 �C with a 5 min hold. The carrier gas (99.9999% He) was kept at a
constant flow of 1 mL/min. The transfer line temperature between the gas
chromatograph and mass spectrometer was 280 �C. Following a 335 s
solvent delay, mass spectra were acquired at 20 scans/s with a mass range
of m/z 85-500. The detector voltage was 1800 V and the electron energy
70 V. The ion source temperature was set at 250 �C.

GC-TOF Data Processing. Peak detection and mass spectrum
deconvolution were performed with Leco ChromaTOF software (version
2.32). Automatic alignment and compound identification using a mass
spectral/retention index library were performed using the BinBase algo-
rithm (22). BinBase assigns and tracks both identified compounds and
unknown compounds using the retention index and mass spectrum as the
two most important identification criteria. All BinBase database entries
are matched against the Fiehn mass spectral library, which was generated
from pure standards using identical instrument parameters outlined above
and contains 712 unique metabolites. Additional confidence criteria are
provided by mass spectral metadata, including unique ions, apex ions,
peak purity, and signal:noise ratios as specified in data preprocessing.
Tabulated data were normalized to total sum intensities of the 108
identified metabolites for each sample. The resulting data were multiplied
by a constant factor to obtain values on scale with original values. All
statistics were determined for the normalized data.

Acquisition of NMRData. Prior to analysis, NMR samples were pH
adjusted to 6.0 ( 0.06 with the addition of 1 M NaOH prepared in D2O.
All NMR spectra were recorded on a Bruker Avance 600 spectro-
meter with XWINNMR (version 3.1) operated at 600.02 MHz for 1H
and 150.87MHz for 13C.All datawere collected at 298Kand referenced to
the internal standard sodium 3-(trimethylsilyl)-2,2,3,3-d4-propionate
(TMSP, 1 mM) at a 0.00 ppm chemical shift for both proton and carbon
dimensions.

One-dimensional (1D) 1H NMR spectra were recorded using a one-
pulse sequence with residual water presaturation. For each sample, 64
transients were collected using a 90� pulse into 32768 data points with a
spectral width of 9.6 kHz. The pulse sequence recycle time was 3.7 s, and
the total acquisition time was 5 min. Data sets were zero-filled to 32768
points, and an exponential line broadening of 0.3 Hz was applied before
Fourier transformation. The resulting spectra were phase corrected
manually and baseline corrected using an automated quintic polynomial
function.

In addition, two-dimensional (2D) 1H-1H COSY and 1H-13C HSQC
NMR experiments were performed with the same sample to aid in the
assignment of metabolites. 1H-1H magnitude-mode COSY spectra were
collected with 2048 points in t1 and 256 points in t2 over a bandwidth of
10 ppm, with 16 scans per t1 value. Spectra were processed with 0�-shifted
sine-squared apodization in both dimensions and zero filling in t1 to yield a
transformed 2D data set of 1024 � 1024 points. 1H-13C HSQC spectra

Table 1. List of Wines Studied

grape variety sample ID vintage region

Chardonnay CH01 2003 Napa Valley, CA

CH02 2003 Napa Valley, CA

CH03 2004 Napa Valley, CA

CH04 2003 Monterey, CA

CH05 2003 Napa Valley, CA

CH06 2004 Southeast Australia

Pinot gris PG01 2003 Oregon

PG02 2004 Napa Valley, CA

Riesling R01 2004 Napa Valley, CA

R02 2004 New York

Sauvignon blanc SB01 2001 Lake County, CA

SB02 2004 Napa Valley, CA

SB03 2004 Napa Valley, CA

SB04 2004 Napa Valley, CA

Viognier V01 2004 Yolo County, CA

V02 2004 Napa Valley, CA

white wine WW01 2004 Napa Valley, CA
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were collected in the echo-antiecho phase-selectivemodewith 2048 points
in t1 and 256 points in t2 over a bandwidth of 12 ppm in 1H and 170 ppm in
13C, with 16 scans per t1 value. HSQC spectra were processed with 90�-
shifted sine-squared apodization, phase correction in both dimensions,
and zero filling in t1 to yield a transformed 2D data set of 1024�2048
points. The measurement time was 116 min for COSY and 134 min for
HSQC.

NMRData Processing.Metabolite identification and quantification
were performed on one-dimensional spectra using the 600 MHz library
from the Chenomx NMR software suite (version 5.0). Assignments were
confirmed with two-dimensional spectra and comparison to published
values (23). In preparation for multivariate statistical analysis, each
spectrum was segmented into 0.005 ppm bins between 0.0 and 10.0 ppm
with bins from 4.70 to 5.15 ppm excluded from all spectra to remove any
variations in the presaturation of the water resonance. The total area of
each spectrum was normalized to 1. Integration into bins and normal-
ization were performed in Chenomx.

Sensory Assessment. Details of the sensory portion of this study can
be found elsewhere (6). Briefly, a panel of 10 trained assessors evaluated
the wines using descriptive analysis techniques. Wines were presented in
random order (randomized block design) under red light to prevent any
color-based bias. Panelists evaluated each of the 17 wines in triplicate. The
intensity of the mouthfeel viscosity was rated on a 10 cm unstructured line
scale anchored at the extremes by high and low markers. The mean of the
scores was calculated and used for statistical analysis. Fisher’s protected
least significant difference was used (R=0.05, double-sided) to compare
the means.

Statistical Analysis. Statistical analyseswere performedonGC-TOF-
MS metabolite data and the 1H NMR bins using Statistica version
7.1. Prior to analysis, the 17 wines were divided into three groups
representing light-bodied (n=6), medium-bodied (n=5), and full-bodied
wines (n=6) based on panel ranking. Univariate statistical analysis was
performed by breakdown and one-way ANOVA; F statistics and P values
were generated for all metabolites. Data distributions were displayed by
box-whisker plots, giving the arithmeticmean value for each category and
the standard error as box andwhiskers for 1.96 times the category standard
deviation to indicate the 95% confidence intervals, assuming normal
distributions.

Partial least-squares (PLS) regression was used to investigate relation-
ships between wine mouthfeel scores and normalized GC-TOF-MS
metabolites (108 identified and 305 unidentified compounds) or binned
NMR data. Data analysis was performed using the Unscrambler software
package (version 9.0, CAMO ASA). All data were standardized prior to
calculations (weighting option=1/SDEV), and model evaluations were
based on the full cross validation procedure. Significant variables were
identified on the basis of a cross validation/jackknifing procedure, and
variables that were deemed unreliable were eliminated to simplify the
model (24). The quality of themodel’s predictive abilitywas assessed by the
percent variance of the Y-variables explained by the X-variables, correla-
tion coefficients between measured and predicted variables, the root-
mean-square error of calibration (RMSEC), which is a measure of the
average modeling error, and the root-mean-square error of prediction
(RMSEP) which provides a measure of the model’s ability to predict a
mouthfeel viscosity score on a new sample on the basis of the cross
validation procedure.

RESULTS

GC-TOF-MS Metabolite Profiling. Fully automated annota-
tion of GC-TOF-MS data by the BinBase algorithm reliably
detected more than 400 metabolites in all wine samples. Of these,
108 are identified by retention index-based mass spectral libraries
and include amino acids, organic acids, sugars, sugar alcohols,
sugar acids, and fatty acids as well other metabolites (Table 2).
The remaining 305 are unique structurally unidentified metabo-
lites consistently detected in the samples. Full metabolite lists for
the wines are available through the SetupX public database
(http://fiehnlab.ucdavis.edu:8080/m1/main_public.jsp). Spectra
of unidentified compounds, their presence in other organisms,
lists of chemically similar compounds, and further information

can be found at http://eros.fiehnlab.ucdavis.edu:8080/binbase-
compound/. A sample GC-TOF-MS chromatogram is provided
in the Supporting Information.

1H NMR Metabolite Profiling. 1H NMR spectral assignments
yieldedapproximately half the number ofmetabolites identified by
GC-TOF-MS (51 and 108, respectively). Portions of each wine
spectrum remained unassigned due to spectral overlap and Che-
nomx metabolite library limitations. The 51 metabolites that were
assigned include amino acids, organic acids, sugars, and sugar
alcohols, as well as other metabolites (Table 2). Full metabolite
lists for thewines are available through the SetupXpublic database
(http://fiehnlab.ucdavis.edu:8080/m1/main_public.jsp). A sample
1H NMR spectrum is provided as Supporting Information.

GC-TOF-MS and NMRMetabolite Comparison. The majority
of metabolites identified by both GC-TOF-MS and NMR
include the most abundant compounds found in wine: ethanol,
glycerol, sugars, organic acids, and amino acids. The greatest
overlap betweenGC-TOF-MSandNMRmetabolite profileswas
seen for amino acids; 20 amino acids were common to both data
sets (Ala, Arg, Asn, Asp, β-Ala, Glu, Ile, Leu, Lys,Met, Phe, Pro,
Ser, Thr, Trp, Tyr, Val, citrulline, ornithine, and oxoproline).
Several amino acids, including cysteine, GABA, glycine, homo-
serine, pipecolic acid, and 4-hydroxyproline, are present in both
MS and NMR libraries and were detected by GC-TOF-MS but
not by NMR. Saccharopine and suberylglycine, two additional
amino acids identified by GC-TOF-MS, are not in the Chenomx
library, and N-acetyltyrosine, which was identified in the NMR
spectra, is not in the current GC-TOF-MS library.

Organic acid profiles also showed good overlap with nine
amino acids common to both GC-TOF-MS and NMR data sets
(2-hydroxyglutaric, benzoic, citric, isocitric, lactic, malic, maleic,
and succinic acids and tartrates). Eleven of those detected byGC-
TOF-MS are not in the NMR library (2-isopropylmalic, 2-
ketoisocaproic, 3-hydroxy-3-methylglutaric, caffeic, cis-caffeic,
citramalic, dehydroascorbic, indole-3-lactic, isothreonic, quinic,
and shikimic acids), and two identified in the NMR spectra are
not in the GC-TOF-MS library (2-furoate and acetate). Several
organic acids represented in both libraries are only found in one
data set or the other; fumarate is detected by only NMR, and
threonate andR-ketoglutarate are detected by onlyGC-TOF-MS.

Sugars, sugar alcohols, and sugar acids are not well-repre-
sented in the Chenomx library; those identified by GC-TOF-MS

Table 2. Overview of Metabolites Found in White Wine by GC-TOF-MS and
1H NMR

metabolite GC-TOF-MS NMR metabolites common to both data sets

amino acidsa 28 21 20

organic acidsb 22 12 9

sugars 16 6 6

sugar alcohols 16 3 3

sugar acids 6 1 1

fatty acids 10 0 0

amines 5 2 2

miscellaneousc 5 6 2

total 108 51 43

aCysteine, GABA, glycine, homoserine, pipecolic acid, and 4-hydroxyproline
detected by GC-TOF-MS but not NMR, saccharopine and suberylglycine detected
by GC-TOF-MS but not in the NMR library, and N-acetyltyrosine detected by NMR
but not in the GC-TOF-MS library. bR-Ketoglutarate and threonic acid detected by
GC-TOF-MS but not NMR, fumaric acid detected by NMR but not GC-TOF-MS,
2-furoate and acetate detected by NMR but not in the GC-TOF-MS library, and 11
additional organic acids detected by GC-TOF-MS but not in the NMR library.
c Xanthine detected by GC-TOF-MS but not NMR, trigonelline detected by NMR but
not GC-TOF-MS, guanine and nicotianamine detected by GC-TOF-MS but not in the
NMR library, and acetaldehyde, ethanol, and formate detected by NMR but not in the
GC-TOF-MS library.
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but notNMRare not present in theChenomx library. Sugars and
sugar derivatives identified by both technologies include fructose,
fucose, galactose, glucose, ribose, xylose, glycerol, mannitol,
myo-inositol, and glyceric acid. The Chenomx library does not
contain fatty acids, and therefore, none were assigned in the
NMR data set. Those identified by GC-TOF-MS include arachi-
dic, behenic, butylstearic, heptadecanoic, lauric, oleic, palmitic,
pelargonic, and stearic acids, as well as the fatty alcohol octade-
canol.

In summary, a total of 43 metabolites are found in both GC-
TOF-MS and NMR data sets. Of the 108 compounds identified
by GC-TOF-NMR, 54 are not in the NMR library, which
prevented their assignment. In 13 cases, the metabolite was
present in both libraries but was either not detected by GC-
TOF-MS (two metabolites) or not detected by NMR (11 meta-
bolites). The eight compounds detected by NMR but not GC-
TOF-MS include fumarate and trigonelline (present in both
libraries), as well as acetaldehyde, acetate, ethanol, formate, 2-
fuorate, and methanol (not in the GC-TOF-MS library). These
six compounds are not found in theGC-TOF-MS library because
they elute in the proximity of the methoximation-silylation
reagents during the solvent delay.

Wine Sensory Assessments. Results from the panel’s scoring of
perceived viscous mouthfeel showed significant differences
among the 17 wines (Table 3). Mean scores ranged from 1.97
for one of the Sauvignon blanc wines (SB02) to 3.21 for one of the
Chardonnay wines (CH03). A Fisher’s protected least significant
difference of 0.5791 (df=16, R=0.05, double-sided) between
viscosity scores indicates a statistically significant difference.
Wines were classified in three groups (high, medium, and low)
on the basis of the mean mouthfeel viscosity score determined by
the panel for univariate statistical analysis. Detailed results from
the complete sensory assessment of the wines are discussed
elsewhere (6).

Analysis of Variance.Analysis of variance (ANOVA) identified
significant differences among compounds in the three wine body
classification groups (high, medium, and low). Of the 108
metabolites measured by GC-TOF-MS, 28 analytes showed
significant differences between body classifications at the 95%
level (Table 4). The significant metabolites include amino acids,
fatty acids, organic acids, sugars, and sugar acids. In general, fatty

Table 3. Mean Perceived Viscous Mouthfeel Ratings and Assigned Wine
Body Classification Used for ANOVA

sample mouthfeel viscosity score (panel mean)a wine body classification

CH03 3.21 a high

CH05 2.91 ab high

CH02 2.85 abc high

R02 2.63 bcd high

CH01 2.57 bcd high

CH04 2.55 bcd high

CH06 2.46 bcde medium

R01 2.44 bcde medium

V01 2.42 bcde medium

SB03 2.33 cde medium

V02 2.32 cde medium

PG02 2.24 de low

WW01 2.22 de low

SB01 2.16 de low

PG01 2.13 de low

SB04 2.12 de low

SB02 1.97 e low

aWines with the same letter are not significantly different at R = 0.05.

Table 4. One-Way ANOVA of the Variation of Mean Normalized Peak Heights of Metabolites Detected in White Wines by GC-TOF-MS among High-, Medium-, and
Low-Wine Body Classification Groupsa

metaboliteb high (n = 6) medium (n = 5) low (n = 6) pc PubChem CID

palmitic acid 8626 11577 18139 <0.0001 985

stearic acid 56824 73447 130003 <0.0001 5281

ribose 6026 6305 9210 <0.001 993

tartrate 395112 490648 681968 <0.001 875

2-ketoisocaproate 529 656 827 <0.001 70

octadecanol 807 1018 1384 0.002 8221

4-hydroxyproline 15945 10688 7706 0.002 825

myo-inositol 204703 387406 361549 0.004 892

maleate 242356 134687 107717 0.005 444266

sophorose 6176 13626 18195 0.006 92797

xylitol 1946 3816 3629 0.006 6912

dehydroascorbate 9449 9154 21781 0.006 835

fucose 12163 15887 20149 0.008 17106

proline 2304004 1691843 1081451 0.015 614

inulobiose 1090 12358 1341 0.017 439552

oleic acid 251 283 437 0.019 965

isothreonic acid 3347 6253 3295 0.021 5282933

arachidic acid 1466 1808 2148 0.021 10467

cellobiose 13256 13422 42827 0.023 294

sorbitol 74624 137416 99570 0.025 5780

threitol 7231 17102 14502 0.028 169019

behenic acid 1987 2695 2811 0.029 8215

phenylalanine 20262 12571 17521 0.030 6140

lysine 56250 32069 49809 0.031 5962

valine 45825 32258 37548 0.032 6287

shikimic acid 52489 29200 26441 0.033 8742

citrulline 6614 12943 4956 0.042 833

2-isopropylmalate 3937 4655 7794 0.044 5280523

aMean values for significant metabolites are listed together with p values. bAll metabolites identified by retention index and mass spectral match with standards run under
identical instrument conditions. cA p of <0.05 indicates a significant difference.
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acids appear to have higher mean concentrations in the low-wine
body classification group,while all othermetabolite types showed
positive, negative, and mixed trends. Significant differences were
seen for 23 of the 53 Chenomx-assigned metabolites (Table 5).
More than half of these are amino acids, and themajority of these
had higher mean concentrations for the wines in the high-wine
body classification group.

GC-TOF-MS PLS Model. Partial least-squares (PLS) regres-
sion analysis of the viscousmouthfeel scores and theGC-TOF-MS
metabolite data indicates that 82% of the variation in perceived
viscous mouthfeel can be explained by the first two dimensions
(Figure 1). In the scores plot (Figure 1A), the wines appear on a
continuum along the first dimension (73% variance explained)
with lighter-bodied wines negatively loaded on PC1 and the fuller-
bodies wines positively loaded. There is no obvious separation
among thewines in the seconddimension (9%variance explained).
A total of 74% of the variation in the metabolite profiles is
described by the model, with 65% explained in the first dimension
and 9% explained in the second. The correlation loadings plot
(Figure 1B) allows for the visualization of the relationship between
the individual metabolites and wine body score; those metabolites
on the right are positively correlated to the mouthfeel score, while
those on the left are negatively correlated.

Both identified andunidentifiedmetabolites are key variables in
the model. Of the identified metabolites, proline is most strongly
positively correlated (0.744) to viscous mouthfeel score (Figure
1C). Five unidentified compounds are also strongly correlated to
mouthfeel score. TheBinBase identifiers for these compounds and
their correlation coefficients are 224909 (0.913), 200478 (0.909),
199232 (0.899), 225846 (0.821), and 213266 (0.700). The similarity
of these five compounds to known library compounds suggests
that these compounds are sugar alcohols or sugar acids (mass
spectral similarity score of >700 with respect to library standards
galactitol, sorbitol, and galactonic acid). Fatty acids palmitate

(-0.942) (Figure 1D) and stearate (-0.908) are themost negatively
correlated to viscous mouthfeel score along with six unidentified
compounds. The BinBase identifiers for these compounds and
their correlation coefficients are: 224521 (-0.982), 224791 (-
0.978), 215355 (-0.974), 200427 (-0.967), 217841 (-0.966), and
224522 (-0.966). The similarity of these six compounds to known
library compounds suggests these are amines or amino com-
pounds (mass spectral similarity score of >700 with respect to
library standards allantoin, putrescine, and aminomalonate).
Results from two representative library searches for mass spectral
similarity are shown in the Supporting Information (Figure S2).

Model statistics are summarized in Table 6. The predictive
ability of the model at the calibration stage of model building
yielded a coefficient of determination of 0.83, which decreased to
0.67 at the validation stage. At both calibration and validation
stages of model building, the root-mean-square error values were
below 0.2 unit on the mouthfeel rating scale (0.131 and 0.182,
respectively),where the range of averagemouthfeel viscosity scores
was 1.24 and wines with scores differing by 0.5791 were signifi-
cantly different (Fisher’s protected LSD, R=0.05, double-sided).

1H NMR PLS Model. PLS analysis of the viscous mouthfeel
scores and the 1H NMR binned data indicates that 79% of the
variation in perceived viscous mouthfeel can be explained by the
first two dimensions (Figure 2); 75% of the variation is explained
in the first dimension and 4% in the second. In the scores plot
(Figure 2A), the wines with the highest viscous mouthfeel score
are positively loaded on PC1, and those with medium or low
scores are intermixed andmore negatively loaded on PC1.A total
of 56% of the variation in the NMR spectral bins is described by
the model, with 44% explained in the first dimension and 12%
explained in the second. The correlation loadings plot (Figure 2B)
shows the relationship between the individual spectral bins and
wine mouthfeel score; those bins on the right are positively
correlated to the mouthfeel score, while those on the left are
negatively correlated.

Spectral regions positively correlated to viscous mouthfeel score
with their correlation values and tentative compound assignments
are as follows: 3.4075 (0.861, proline), 4.1225 (0.85, proline/lactate),
9.1025 (0.837, trigonelline), 9.1075 (0.816, trigonelline), 1.9175
(0.809, acetate), 4.1075 (0.799, proline/lactate), and 4.1275 (0.755,
proline/lactate) (Figure 2B). Additional bins in the final model
which also contain proline, lactate, and trigonelline resonances
include 3.3925 (0.745, proline), 3.3975 (0.725, proline), 1.3375
(0.631, lactate), 1.3325 (0.726, lactate), and 8.8325 (0.667, trigonel-
line). A plot of wine proline concentrations determined by Che-
nomx shows trends similar to those of the GC-TOF-MS proline
values and demonstrates some overlap between the two data sets
(Figure 2C). Spectral regions negatively correlated to mouthfeel
score with their correlation values and tentative compound assign-
ments include 4.3275 (-0.863, tartrate/malate), 3.7725 (-0.865,
glycerol), 4.3325 (-0.841, tartrate), 3.5425 (-0.803, glycerol),
3.5325 (-0.801, glycerol), 3.5625 (-0.777, glycerol), and 3.5525
(-0.745, glycerol) (Figure 2B). A detailed view of theNMRspectra
averaged by mouthfeel grouping clearly shows increased peak
height for those bins positively correlated and decreased peak
height for those bins negatively correlated (Figure 2D).

Model statistics are summarized in Table 6. The predictive
ability of the NMR model at the calibration stage of model
building yielded a coefficient of determination of 0.75, which
decreased to 0.66 at the validation stage. At the calibration and
validation stages of model building, the root-mean-square error
values were 0.156 and 0.182 score unit, respectively, where the
range of average mouthfeel scores was 1.24 and wines with scores
differing by 0.5791were significantly different (Fisher’s protected
LSD, R=0.05, double-sided).

Table 5. One-Way ANOVA of the Variation of Mean Concentrations (milli-
molar) of Metabolites Detected in White Wine Samples by 1H NMR among
High-, Medium-, and Low-Wine Body Classification Groupsa

metaboliteb high (n = 6) medium (n = 5) low (n = 6) pc PubChem CID

valine 0.33 0.19 0.18 0.001 6287

phenylalanine 0.23 0.13 0.13 0.001 6140

isoleucine 0.20 0.11 0.11 0.002 6306

tyrosine 0.17 0.11 0.08 0.003 6057

proline 15.75 9.42 4.59 0.003 145742

serine 1.91 1.70 0.96 0.009 5951

glutamate 2.19 1.56 0.84 0.011 33032

mannitol 2.25 1.58 1.16 0.011 6251

leucine 0.59 0.30 0.34 0.012 6106

benzoate 0.03 0.01 0.01 0.016 243

tryptophan 0.05 0.04 0.02 0.024 6305

malate 1.00 3.72 1.53 0.028 525

oxoproline 2.01 1.67 0.95 0.032 7405

maleate 0.02 0.01 0.01 0.033 444266

alanine 1.88 1.53 0.80 0.033 5950

2-furoate 0.05 0.03 0.02 0.037 6919

fumarate <0.01 0.01 <0.01 0.038 444972

ethanol 0.76 0.60 0.55 0.045 702

myo-inositol 2.39 3.96 2.32 0.046 892

isocitrate 1.53 1.39 0.84 0.047 5318532

2-hydroxyglutarate 0.70 0.61 0.51 0.048 43

arginine 1.32 1.90 0.96 0.048 232

trigonelline 0.17 0.17 0.12 0.048 5570

aMean values for significant metabolites are listed together with p values. bAll
NMR metabolite assignments are based on Chenomx software assignments and
literature value and are, as such, tentative. cA p of <0.05 indicates a significant
difference.
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DISCUSSION

Metabolite Identification by GC-TOF-MS and 1H NMR. The
2-fold difference in the number of metabolites identified from
GC-TOF-MS and NMR data sets (108 and 51, respectively) can
be attributed to both the fundamental differences in the two
technologies and the differences in the data annotation programs
and their associated libraries. Detection limits are typically
several orders of magnitude lower for MS than for NMR
(picomolar andmicromolar tonanomolar, respectively).Further-
more, the gas chromatography step performed prior to MS
detection simplifies compound identification. While chromato-
graphy-coupled NMR systems are commercially available (e.g.,
LC-NMR), these instruments are not standard laboratory equip-
ment. NMR-based metabolite analyses are typically performed
on complex sample mixtures without any preseparation, and the
identification of individual metabolites is complicated by many
overlapping signals. In the absence of access to specialized LC-
NMR equipment, one can conduct two-dimensional experiments
to aid in compound assignment as we did in this study; however,
this approach requires significant investment in both instrument
time and data analysis time.

Global analysis of complex mixtures with the goal of identify-
ing potentially minor differences requires robust data annotation
tools. The GC-TOF-MS metabolite assignments in this study
were performed by BinBase software and were fully automated.
Fully automated NMR assignments were attempted with the full
Chenomx library but yielded overfit data, and a semiautoma-
ted assignment strategy was employed. First, a sublibrary of
metabolites identified by GC-TOF-MS analysis was created in
Chenomx; then these metabolites were automatically assigned,
and finally, manual correction of peak shifts and intensities was
performed. Thus, NMR metabolite assignments by the software
not only required knowledge of the compounds present but also
required significant hands-on time for the manual correction of
peak shifts and intensities. Library limitations also affected the
number of metabolites assigned by the two methodologies. A
comparison of the Fiehn and Chenomx libraries with the KEGG
metabolite database (release 45.0) reveals that the Fiehn library
contains 3 times the number of KEGG metabolites (695 of 712)
compared to Chenomx (206 of 270).

In summary, GC-TOF-MS proved superior to NMR for the
identification of white wine metabolites. The GC-TOF-MS
metabolite list was more comprehensive, and assignments were

Figure 1. PLS scores plot (A) and correlation loadings plot (B) of viscous mouthfeel rating data (Y ) and 71 GC-TOF-MS metabolites (X ) used in model
construction. The correlation loadings plot (B) aids in visualization of the relationship between the individual metabolites and wine mouthfeel score; those
metabolites on the right are positively correlated to the mouthfeel score, while those on the left are negatively correlated. Both identified and unidentified
metabolites are key variables in the model; those discussed in the text are marked with bold circles and labeled with either compound name or bin number
(unidentified metabolites). Data distributions for metabolites proline (C) and palmitic acid (D) are displayed as box-whisker plots, giving the arithmetic mean
value for each category and the standard error as box and whiskers for 1.96 times the category standard deviation.Wines are arranged on the x-axis in order of
decreasing mouthfeel score.

D
ow

nl
oa

de
d 

by
 U

 O
F 

C
A

L
IF

O
R

N
IA

 D
A

V
IS

 o
n 

Se
pt

em
be

r 
14

, 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 J

ul
y 

9,
 2

00
9 

| d
oi

: 1
0.

10
21

/jf
90

19
32

2



Article J. Agric. Food Chem., Vol. 57, No. 15, 2009 6905

complete in a fraction of the time required for the NMR data.
NMR assignments required additional data collection for assign-
ment confirmation; however, development of wine-specific com-
pound libraries for NMRmight reduce this time and increase the
number of compounds identified. Ultimately, equipment avail-
ability frequently dictates the analytical methods used, and both
GC-TOF-MS and NMR demonstrate the ability to generate
substantial information regarding white wine metabolites.

GC-TOF-MS and NMRPLSModel Comparison. In this study,
PLS regression was used to investigate the relationship between
themetabolite data and themouthfeel viscosity rating of 17 white
wines. This approach identifies a linear combination of com-
pounds that best model the viscous mouthfeel perception scored

by the sensory panel. PLS models were built independently with
either the GC-TOF-MS data or the NMR data. GC-TOF-MS
models were constructed from the complete metabolite data set
(identified and unidentified compounds). Analysis of the NMR
data was performed using the standard method of spectral
binning, which allowed for the inclusion of unassigned portions
of the spectrum in the PLS solution.

Results from the PLS modeling suggest that both GC-TOF-
MS and NMR models have the potential to predict wine
mouthfeel viscosity scores (or minimally to classify wines into
high- and low-mouthfeel viscosity groups), as model quality was
similar for the two technologies at both the calibration and
cross-validation stages. Additional studies involving much larger

Table 6. Summary of Calibration and Validation Model Statistics for GC-TOF-MS and NMR Predictive Models

calibration validation

no. of significant components no. of significant variablesa % Y explained r 2 RMSECb r 2 RMSEPc

GC-TOF-MS 2 71 82 0.83 0.131 0.67 0.182

NMR 1 54 79 0.75 0.156 0.66 0.182

a Identified by a cross-validation/jack-knifing procedure (19). bRoot-mean-square error of calibration; values expressed in mouthfeel score units. cRoot-mean-square error of
prediction as calculated by leave-one-out cross validation procedure; values expressed in mouthfeel score units.

Figure 2. PLS scores plot (A) and correlation loadings plot (B) of viscousmouthfeel rating data (Y ) and 54 NMR spectral bins (X ) used inmodel construction.
The correlation loadings plot (B) aids in visualization of the relationship between the NMR bins and wine mouthfeel score; those bins on the right are positively
correlated to the mouthfeel score, while those on the left are negatively correlated. Key bins discussed in the text are marked with bold circles and labeled with
the bin value (parts per million). Wine proline concentrations determined by the Chenomx software are plotted in panel C on the Y-axis in order of decreasing
mouthfeel score. Averaged 1HNMRspectra (D) for high-body (n = 6),medium-body (n = 5), and low-body (n = 6)mouthfeel wineswith binned regions positively
(þ) and negatively (-) correlated to mouthfeel score are highlighted.
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sample sets are needed to confirm these results, as the limited
samples tested in this study (n=17) did not allow for independent
testing of the predictionwith additionalwine samples not used for
model building. Once constructed, robust models based on either
GC-TOF-MS or NMR data could replace sensory panels, which
are expensive and time-consuming.

Additionally, interpretation of the models from a chemical
standpoint has generated a list of compounds thatmay be directly
or indirectly involved in wine mouthfeel perception. Both GC-
TOF-MSandNMRPLSdata andmodels suggest prolinemay be
positively correlated to wine body. Althoughmany studies report
the free amino acid content of grape juices and finished wines
because of their importance as nitrogen sources for yeast during
fermentation and influence on the aromatic composition of
wines, to date, there are no literature reports regarding the
potential role of amino acids in determining wine body. Proline
is one of the most abundant amino acids in grapes and has been
reported at levels up to 3.7 g/L in grape must (25). Unlike other
abundant grape amino acids (arginine, alanine, glutamate, and
glutamine), proline is not used by the yeast under the anaerobic
conditions of wine fermentation and remains the most abundant
amino acid in the finished wine (26). Factors known to influence
amino acid profiles in grape berries includematurity, cultivar, soil
type, rootstock, temperature, season, fertilization, and crop
level (27). If proline is a factor contributing to mouthfeel proper-
ties of wines, viticulture practices could be optimized to target
desired levels.

Though proline levels may be only an indicator of another
factor influencingmouthfeel, it is interesting to note that aqueous
proline solutions demonstrate unusual properties for a low-
molecular mass substance. With increasing concentrations, pro-
line solutions show exponential enhancement of viscosity and
increased density (28). 1HNMRstudies reveal a downfield shift of
the water peak as the proline concentration increases, which is
consistent with an increasing level of water structure induced by
both solute-solvent and solute-solute hydrogen bonding (29).
These studies have been conducted with aqueous solutions at
concentrations at least 50-fold higher than those found in wine
and need to be performed at lower concentrations in model wine
solutions to determine whether these properties are relevant in a
winelike matrix. Interactions between proline and other metabo-
lites may also exhibit special properties that enhance perceived
mouthfeel viscosity.

Further investigation is required to determine the connection
between proline andwine body. Several observations in this study
call into question the role of proline with regard to mouthfeel.
Sample R02, a Riesling from New York that received one of the
highest mouthfeel scores, contains almost no proline. Addition-
ally, the absence of bins in themodel from thewell-isolated proline
multiplet resonances centered at 1.978, 2.013, and 2.061 ppm
despite the inclusion of bins 3.3925 and 3.3975, which also
correspond to well-isolated proline resonances, provides conflict-
ing evidence. These data suggest either proline does not contribute
directly to wine body or more than one combination of wine
chemistries that increase wine body perception exists.

The NMR model additionally identified positive correlations
with spectral regions containing lactate. In the initial sensory
work where organic acids were quantified by HPLC, lactate was
also found to be significantly correlated to viscous mouthfeel (6).
Lactate is present in wines primarily as a result of its conversion
from malate during malolactic fermentation (30). In many cases,
the malolactic fermentation is completed in oak barrels as
opposed to stainless steel tanks, and it is possible that oak-derived
compoundsmay alsobe correlatedwith lactate concentration and
responsible for the effect on viscous mouthfeel. The negative

correlation between mouthfeel score and bins corresponding to
resonances for malate is also likely related to malolactic fermen-
tation.

The GC-TOF-MS model revealed a negative correlation
between fatty acids and wine body. Palmitic and stearic acids
are two of the most abundant fatty acids found in grapes, and
their concentration declines throughout fermentation (31, 32).
Yeast synthesis of fatty acids during fermentation also
contributes to their levels in wines (33). Fatty acid concentra-
tions in finished wine have been shown to vary with grape
maturation, cultivation practices, environmental conditions,
and wine production method (34). In the NMR-based model,
negative correlation was found between perceived wine body
and bins assigned to tartrate and glycerol resonances. Tartrate
has not previously been identified as influencing mouthfeel
properties. It is one of the major organic acids that accumulate
in grapes, and its concentration is affected by cultural condi-
tions, variety, and season (35). The negative correlation be-
tween glycerol and mouthfeel is difficult to interpret as other
studies have shown either no correlation between glycerol
content and mouthfeel in white table wines (36) or a variable
effect that was dependent on the particular wine to which the
glycerol was added (37).

Metabolite profiling of white wines by GC-TOF-MS and 1H
NMR together with PLS model construction to predict panel
mouthfeel viscosity scores has been used to gain insight into the
chemical basis of wine body. This exercise has generated a list of
metabolites that either contribute to or are correlated with wine
mouthfeel. Extensive testing of each of thesemetabolites inmodel
wine solutions and in studies employing wines with large con-
centration ranges (naturally or by spiking with standards) is
required to establish the contribution of each to perceived
mouthfeel viscosity. Once key metabolites have been identified,
viticultural and enological practices responsible for affecting their
concentrations can be identified and implemented to tailor this
wine sensory property.

ABBREVIATIONS USED

ANOVA, analysis of variance; COSY, correlation spectrosco-
py; GABA, γ-aminobutyric acid; GC-TOF-MS, gas chromatog-
raphy-coupled time-of-flight mass spectrometry; 1H NMR,
proton nuclear magnetic resonance; HSQC, heteronuclear sin-
gle-quantum correlation; MSTFA, N-methyl-N-(trimethylsilyl)
trifluoroacetamide; PLS, partial least-squares; RMSEC, root-
mean-square error of calibration; RMSEP, root-mean-square
error of prediction; TMCS, trimethylchlorosilane.
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