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Cellular metabolomics: the quest for pathway structure 
 
Metabolomics can be used for two major and very different purposes: the screening for 
differences between global metabolic fingerprints of cohorts of populations, which is often 
referred to as metabonomics, or efforts to understand the regulatory structure of metabolic 
pathways, its connectivity, control of cellular concentrations and fluxes of metabolites, and 
partitioning of metabolic products between cellular compartments and excretion. Almost 
certainly, any biomarkers or major differences that have been identified in metabolic 
fingerprinting (resp. metabonomics) will lead to the next level of query, a quest for an in 
depth mechanistic understanding, e.g. why certain biomarkers were specific for a given 
biological condition or perturbation. Vice versa, once metabolic events are understood in a 
comprehensive way for a given cellular system, the logic next step is to ask how the observed 
regulatory structure responds to external stimuli and how its metabolic responsiveness relates 
to the integration of the cellular regulation into larger systems, be these on the level of tissues, 
organs or the organism. Even for unicellular systems it is known that the excretion of 
metabolites and ultimately, the growth rates of cell cultures depend on the competition and 
interaction between these cells, especially when these are present in a mixture with very many 
other cell types or unicellular organisms. Although there is a different emphasis on 
understanding metabolic responses in a larger context between the two major approaches, 
eventually a better understanding of cellular regulatory circuits is always sought. On the other 
hand, the emphasis of global metabolic fingerprinting1 (metabonomics) is clearly the ability to 
distinguish different metabolic states and to make predictions on the eventual outcome and the 
fate of organisms in a given biological condition. A similar kind of predictability is also key 
for cellular metabolomics, which can be used for example in bioengineering efforts2 with the 
aim of increasing specific metabolic levels3, or for pharmacological approaches in which 
certain drugs are employed to exert control effects without redirecting unrelated metabolic 
fluxes in an unwanted way. Concluding, both major aims of metabolomics, ascertaining 
differences between metabolic systems and understanding metabolic control, are two 
complementary efforts which rely on each other. The major focus of this chapter is 
highlighting difficulties for cellular metabolomics in understanding metabolic networks. Why 
do we have so many unknown metabolites and how can we identify them in a rapid manner? 
Why are metabolic networks behaving in a highly flexible manner, yet are supposed to have a 
rigid structure of biochemical properties? Why is it so hard to predict metabolic systems 
despite decades of work, and the relative low number of enzymes involved in primary 
metabolism and energy regulation? These and related questions are needed to be answered in 
order to make full use of the prospects of metabolomics. 
 
1. How large is the metabolome? 
 
It is a long standing observation in many metabolomic research projects that the number of 
detected compounds is far higher than predicted by standard metabolic pathways. For 
example, the number of metabolites that were expected in the bacterium B. subtilis were 
estimated to account for a maximum of 800 compounds, but more likely even fewer, when 
metabolic pathways were reconstructed from the genome sequences and enzyme coding 
genes. However, a combination of three capillary electrophoresis (CE) methods coupled to 
mass spectrometry (MS) identified and quantified up to 1,500 metabolites from B. subtilis4,5, 



far more than expected from the simple calculations given above. One can argue that not all of 
these detected signals were accountable for genuine intracellular metabolites but also might 
be caused by partial degradation or artifact formation during the sample preparation 
procedure. On the other hand, many metabolites might still have been missed by the 
aforementioned analytical chemistry methods. The strength of these techniques is the 
detection of charged molecules, and arguably, most metabolic intermediates bear acidic or 
basic functional moieties that would enable good separation by CE/MS6. However, both 
capillary electrophoresis and mass spectrometry are notoriously poor in separating and 
ionizing nonpolar (hydrophobic) and uncharged metabolites which are very likely also to be 
present in plasma membranes and subcellular structures.  
 
One may further look at mammalian cellular metabolomes. By a similar way of calculating 
the number of likely metabolites that originate from the sequenced genome and a consecutive 
prediction of biochemical pathways, some 2,400 compounds have been calculated to comprise 
the complement of internal human metabolites. Does this actually hold true? There is valid 
reasoning in arguing that mammals do not need to synthesize many compounds which can 
rather be digested through food sources, which may especially be true for those compounds 
that would be energetically costly to produce. However, there is also growing evidence that 
many enzymes are far less specific than previously assumed and might thus accept a variety 
of substrates that can be used for oxidative purposes, or that can be used as building blocks in 
biosynthetic routes. Given the converging role of catabolism and the great variety of foods 
that can be used by omnivores, it is imminent that a superficial view of mammalian enzymes 
does not hold to be as selective as is suggested by (reconstructed) genomic pathways7. It is 
simply not very realistic to exclusively reflect on (theoretical) substrate preferences and 
disregard the reality of mammals as food-eating organisms, for which the distinction between 
exogenous and endogenous compounds is far more artificial than, say, for photoautotrophic 
systems like plants. In addition, compounds that are produced and excreted by the gut 
microflora add to the complexity of mammalian metabolomic systems8. In humans, the 
metabolome therefore consists of a high complexity that relies on multiple parameters, not 
only on the human genome and reconstructed biochemical networks but also on food 
preferences and the intestinal microflora. Recently, first attempts have been reported on the 
prediction of metabolites that originate from ingestion of xenobiotics9, but too little is yet 
known about the dynamics of adsorption, transport and metabolism of complex diets to 
directly infer the complete metabolome within the human body. 
 
Therefore, a complete analysis of the metabolome of photoautotrophic organisms and 
unicellular systems should, in principle, be much simpler. Many of these organisms have a 
clear preference for the major source of carbon (carbon dioxide for photoautotrophs, simple 
small molecules like acetate or glucose for microbial systems). Why is the complete set of 
small molecules unknown even for these rather simple systems? One major reason is that still, 
many genes have only been vaguely annotated with properties such as ‘catalytic activity’. The 
elucidation of pathways in which the corresponding putative enzymes work is a tedious and 
not always straightforwardly interpretable. Consequently, functional genomics in such 
organisms necessarily calls for de novo structural elucidation of ‘unknown’ signals that were 
detected using advanced analytical chemical instrumentation. 
 
2. Metabolite identification  
 
The identification of metabolites is a less clear term than commonly believed10. First, a clear 
distinction is needed between annotating peaks as ‘known compounds’ from a series of 
chromatograms and de novo structural elucidation. Secondly, both tasks face different 



challenges. For example, peaks in GC/MS may be annotated as ‘L-Aspartate’, however, in 
certain cases, also D-Aspartate might occur which would be indistinguishable from its L-
isomer if not special precautions are taken. Conversely, even famous and Nobel-prize winning 
work for in depth de novo structural elucidations later turn out to be wrong11, despite the 
many steps and various spectroscopic techniques that were involved. Therefore, any 
metabolite identification, especially in metabolomics, must precisely define how compound 
names are supported by experimental data and which analytical method and algorithm was 
used, including threshold levels. 
 
It is now clear that there are different levels of confidence in naming metabolites. Many peaks 
will not safely match the criteria for clear-cut annotations, and accurate de novo 
identifications are too costly and too slow for most studies. However, if confidence levels are 
clearly ascribed, it might be valuable to annotate unknown analytical signals with a less 
precise but still biochemically meaningful name. Consequently, metabolite annotations may 
be structured into four major groups: 
 
(i) compounds that are identified by data acquisition of at least two different physicochemical 
parameters and using authentic reference standards. Typical examples comprise the analyses 
of small molecules such as cholesterol by volatility (in gas chromatography) and mass spectra 
(ion fragmentation pattern). As stated above, confidence thresholds for the identification 
algorithm must be given (e.g. retention time window, mass spectral similarity). 
 
(ii) Secondly, compounds could be tentatively identified by deferring putative chemical 
structures from physicochemical properties. This process is called dereplication, and a 
potential workflow is detailed in figure 1. Further, comparison of spectral properties of 
unknown signals to spectral libraries may lead to tentatively identified annotations, if the 
spectral similarity score and matching physicochemical parameters are beyond reasonable 
doubt. Usually, this process would not distinguish between closely related isomers. 
 
(iii) Next, the structural information that is gained along the analytical process may not be 
sufficient to derive exact chemical structures or a small list of tentatively identified 
compounds, but it might still enable a classification of unknown compounds to a certain 
chemical group such as ‘carbohydrate’. Such classifications may be aided by rules obtained 
supervised statistics carried out on larger mass spectrometric libraries or deduced by expert 
knowledge of mass fragmentation rules.  
 
(iv) Last, in unbiased metabolomic surveys there will always be analytical signals that are just 
too low abundant, too uncommon or too poor in spectral information to be classified to a 
certain group of metabolites. These compounds can still be used for phenotyping approaches 
using relative quantification of signal intensities between genetic or treatment perturbations, 
but in order to derive biochemical or mechanistic insights, the isolation of microgram 
quantities of these metabolites would be necessary.  
 
Obviously, the preferred route of consistent, reliable and routine metabolite identification is to 
work with authentic reference compounds. Given the theoretically unlimited size of 
metabolomes, especially in heterotrophic multicellular organisms, only a fraction of signals in 
metabolite profiles will generally be annotated by this way. It should become good 
metabolomic practice that at least the common set of conserved metabolites in primary 
metabolism are available as reference standards to verify certain signals. Publications should 
indicate which level of certainty is associated with metabolite naming, including referencing 
to authoritative chemical databases such as PubChem12,13, the (commercial) chemical 



abstracts service CAS or the InChI code14. In addition, if metabolite signals are reported that 
need yet to be structurally characterized, it is mandatory to label these signals in a way that 
enables tracking physicochemical characteristics (e.g. mass spectrum, quantification ion and 
chromatography retention times). Furthermore, it should be good reporting practice to label 
such unknown compounds in a way that is consistent for each specific laboratory in order to 
potentially learn about responses for this novel metabolite across biological studies, and 
hopefully even to exchange information about such compounds between laboratories. In 2005, 
an initiative has been formed under the umbrella of the metabolomics society that tries to 
foster such data exchange and re-use of metabolomic data by drafting and implementing 
‘reporting standards’ on metabolomic studies15. The idea for this initiative is that metabolomic 
studies are so rich in data that novel conclusions may be derived if datasets are investigated 
from more than one point of view. Obviously, such efforts directly benefit from better 
strategies to structurally elucidate, annotate and report on metabolite identities.  
 
As pointed out above, the identification of metabolic signals is best performed using authentic 
reference compounds. Where this is not possible, metabolite identity must be unraveled de 
novo as detailed as possible16. Classical methods have involved isolation of compounds 
followed by in-depth structural characterization using spectroscopic techniques. However, 
there are caveats. The parameter space for stereo configurations and positional isomers is 
tremendous, and even with elegant strategies and long time efforts, initial identifications have 
often proved wrong11. Furthermore, there is the risk that identifications are carried out on 
compounds that are later found to be already published in less well-known journals. Such 
problems may be circumvented by applying a strategy that aims at tentatively annotating 
potential structural candidates from databases before performing more laborious work on 
isolation and de novo identification. Annotations would need to combine all available 
physicochemical information from a separation and spectral characterization of a specific 
compound without necessarily isolating it, and a workflow is outlined in figure 1. The best 
way to approach such tentative identifications is by utilizing the combination of 
chromatography and mass spectrometry, calculating parameters from this information, and 
then matching these parameters with theoretical values that are calculated from molecular 
structures of database entries.  
 
Two strategies may be distinguished: starting from elemental formulae and chemical 
databases or starting from mass fragment spectra and MS libraries. The first approach focuses 
on the elemental composition. Most recently, we have shown in a chemoinformatic approach 
that even 0.1 ppm mass accuracy would not enable unambiguous calculation of elemental 
formulae of low molecular weight compounds17, whereas mass spectrometers with 3 ppm 
mass accuracy and 2% relative isotope ratio accuracy enables constraining compositional 
calculations in a most dramatic way to one or just a few candidate formulae. Such use of 
isotope ratio data can be applied to both LC- or GC-based methods18,19. Calculated elemental 
compositions will be used to query chemical and biochemical databases, resulting in 
potentially a couple of thousand candidate structures. Good databases for these purposes are 
the publicly available PubChem effort (5 million entries as of January 2006) or the 
commercial Dictionary of Natural Compounds DNP (200,000 structures). For these 
structures, physicochemical parameters can be calculated, e.g. boiling points, lipophilicity 
(log Kow) and pKa values. In the next step, the same parameters can be calculated for the 
unidentified peaks using the experimental retention time information from liquid or gas 
chromatography. Matching the experimental to predicted parameters, along with the 
determination of elemental compositions, will constrain the candidate structure list to just a 
few structures, most of which will be positional isomers or closely related compounds. In 



principle, the commercial Chemical Abstracts Service (CAS) could also be used for the 
identification of a list of potential structures. However, this service does not allow batch 
queries of structure searches and thus cannot be embedded into automatic algorithm routines 
because it needs to be handled in a manual way.  
 
This constrained list of candidate structures can further be confined by matching tandem mass 
spectrometric information (MS/MS spectra) with theoretical fragmentations. Such theoretical 
MS/MS spectra can be predicted from commercially available software solutions based on 
proposed structures and known fragmentation rules (Mass Frontier)20. However, so far 
MassFrontier has only implemented positive ionization rules, and it obviously relies on fully 
characterized fragmentation mechanisms published in literature. Only if no structure from the 
initial list of tentative compounds remains, unidentified peaks must be regarded as novel 
metabolites which could be subjected to classical de novo identification, including isolation of 
the compound and two dimensional NMR analysis.  
 
A second approach would query mass spectral libraries. Once enough mass spectra have been 
annotated with structures, such as the case for GC/MS spectra under electron impact 
ionization, further processes can be added to on-line structural annotations. For example, the 
large NIST 5.0 mass spectral database comprises some 5,000 compounds with 
trimethylsilylated moieties, the most common derivatization technique used in metabolomics. 
From these compounds, substructures can be generated to be used as training data sets for 
supervised statistical tools. Such algorithms aim at learning rules to automatically annotate 
unknown mass spectra to belong to certain chemical groups such as ‘carbohydrate’, ‘primary 
amine’, and other metabolite families. The advantage of this approach is that multiple 
supervised methods may be tested simultaneously (such as partial least square, linear 
discriminant analysis, tree-based models, feature selection, association rule models, and 
others) which can then be investigated with respect to false discovery rates and robustness. In 
conjunction with calculating boiling points from retention indices, it will be further possible 
to assign the size of the molecules, e.g. mono-, di- and trisaccharides, sugar alcohols and other 
structural information such as the presence of furanoside and pyranoside rings. For any peak 
for which very high similarity or even virtual spectral identity is found, physicochemical 
properties (e.g. boiling points) could be calculated from the structures and matched with the 
experimentally determined parameters. 
 
Only if no candidate structure remains after exploiting the techniques outlined above, it is 
reasonable to assume that an unidentified compound is a truly novel metabolite which would 
need to be identified using classical de novo compound identification, combining various 
structural characterization techniques including NMR. 
 
3. Pathway identification  
 
Once all biologically relevant metabolic signals are annotated in the workflow schema given 
above, these structures need further be associated to a biochemical pathway and a biological 
function in order to aid cellular interpretation of metabolomic findings.  
A first step utilizes common pathways that are compiled in consensus biochemical maps such 
as BioCyc21, or specific maps like AraCyc and comparable overview charts. A general layout 
of reconstructed pathways is outlined in figure 2. These maps are certainly a good start for 
annotating compounds to pathways in which they are involved, but unfortunately, four major 



problems can be outlined: (a) for any given organism or tissue, these maps are usually sparse 
and do not detail the complement of already existing biochemical knowledge, especially they 
do not contain information for many less common metabolites, (b) a number of metabolites 
that are believed to be involved in certain pathways cannot readily be determined by a given 
analytical-chemical technique (depicted as ‘empty boxes’ in figure 2), (c) many novel 
metabolites may be detected (depicted as Y1-Y9 in figure 2) for which no enzymes or 
biochemical reactions may be known and (d) the pathway topology and the directionality of 
enzyme reactions are often deferred from homology to other organisms and may reflect the in 
vivo function in the cellular system under study.  
 
Therefore, pathways have to be elucidated using biochemical, genetic and molecular biologic 
approaches which may be summed as ‘functional genomics’. Three potential outcomes are 
possible for functional genomics approaches to pathway elucidations.  
 
(A) Gene products may comprise specific catalytic activity, converting  

• already known substrates to known products in bypasses of classical reactions, or in 
cellular compartments that usually do not comprise these pathways.  

• known substrates to novel compounds, e.g. in anabolic reactions to fulfill specific 
biological roles such as communication and defense. 

• novel substrates to known compounds that may then merge into mainstream 
metabolism, e.g. in catabolic reactions to control turnover of compounds that were 
synthesized in the aforementioned process 

• novel compounds to other novel compounds, which then derive a completely new 
pathway. 

(B) In addition, unspecific enzymatic activity must be considered, for example processes that 
convert a variety of known substrates to a plethora of products which can then be utilized 
for cellular communication or defense. Examples would be P450 monooxygenases or 
enzymes involved in release of plant volatiles. The evolutionary and biological roles of 
such unspecific broad band anabolic processes are poorly understood. Emission of a 
variety of different compounds instead of a single specific metabolite might aid in inter- 
and intraspecies communication, where signals are perceived in patterns rather than in 
activation of a single (specific) receptor.  

(C) Last, novel compounds may be produced by non-enzymatic processes such as oxidation, 
hydrolysation or even cleavage and condensation. Molecular biological analysis of non-
annotated genes may lead to alteration of metabolite profiles, however, in order to 
conclude that enzymes encoded by these genes actually produce the final metabolic 
products, the exact reaction mechanisms must be worked out. Even more difficult to 
unravel are products that are entirely produced by physicochemical products but are only 
present at certain physiological conditions, say heat stress. Generally, metabolic products 
are variable by interactions of genotype x environment x time x spatial location. This 
matrix of parameters complicates any simple relationship of using metabolic phenotypes 
to understand gene functions, so any pathway hypothesis that is developed by 
metabolomics approaches needs to be verified by molecular and biochemical studies.   

 
Given these constraints, novel pathways might be unraveled for compounds like Y3 and Y9 in 
the generalized pathway given in figure 3. Due to the reasons outlined above, such pathway 
elucidation is a rather tedious process that usually would not allow quick mapping of the other 
novel metabolites Y1,2,4-8 into the biochemical pathway structure.  
 
Furthermore, the situation may even be more complicated than outlined so far. We have 
considered linear 1:1 relationships of enzymes, substrates and products that can be unraveled 



using classical biochemical or modern molecular biology tools. However, there is still the 
question why there are seemingly more metabolites than enzymes, why there is so much 
diversity of metabolomes within a genus or between closely related species, and why crosses 
of these species will often reveal metabolites that are present in neither of the parents. This 
can hardly been explained by metabolite channeling or by kinetic parameters. This 
phenomenon might rather point to differences in substrate availability and transport between 
cellular compartments, organs, or even within a cellular compartment. At least in eukaryote 
cells, but likely also in prokaryotes, the intraplasmic space (e.g. in the cytosol) cannot be 
regarded as an aqueous solution that allows free diffusion of substrates. We might need to 
consider the interaction between different protein complexes that carry enzymatic activities, 
in addition to allelic complementation of missing pathway links that may distinguish crosses 
from parental lines. Protein complexes are focus of very active research in many areas of 
biology and biomedicine, but so far, enzymatic consequences have rarely been studied. It is 
known that protein folding, topology and protein complexes rely on posttranslational 
modification as well as allosteric modification, both of which may largely change in response 
to genetic differences (e.g. in crosses) or environmental perturbation (e.g. stress). 
Consequently, the formation of novel compounds may also largely depend on the actual 
formation and disassembly of such protein complexes in a given intracellular environment. 
Such events would easily be missed by typical molecular biological techniques which focus 
on the identity and activity of a single enzyme, e.g. by over expression of eukaryote enzymes 
into E. coli for purification purposes. It may be due to these theoretical difficulties that just a 
few examples have been reported so far where use of metabolite profiling actually led to the 
discovery of new pathways, such as for a direct pathway from glycine to glyoxylate in yeast22.   
 
4. Omics data integration  
 
The paradigm of (molecular) biology implies a more or less linear hierarchy from genome to 
phenotype. This linearity would start at gene expression, splicing, translation to encoded 
proteins, posttranslational modifications, and eventually continue to metabolites as victims of 
the overall process, which are regarded as useful tools to monitor and predict the ultimate 
organismal phenotypes. In current research proposals, research panels and scientific boards, 
this view on the biological paradigm leads to demanding an integration of data across these 
levels of cellular organization. The integration of data from different levels of cellular 
regulation focuses on biochemical maps that are derived from genomic annotations and 
homology of genes and enzymes to well-studied organisms23.  
 
Theoretically, this is a compelling idea that might help understanding cellular biology by 
using the data to model the dynamics of the organism in a Systems Biology approach. 
However, the linearity of the paradigm represents an overly simplistic view that does not lend 
a good framework for actual data integration beyond biomarker detection for classification 
purposes. Despite a number of years that Systems Biology has been announced as a valuable 
goal, the number of research papers and the quality of these yet do not justify the verve with 
which the demand for ‘Omics data integration’ is put forward.  
 
The problem is that the level of complexity increases with each level of cellular organization. 
The genome itself can readily be used for in depth studies and comparisons, but in many 
organisms, there is a 1:n relationship on subsequent levels of organization. One gene may be 
spliced and transcribed into more than one gene product, one mRNA may be translated and 
modified to more than one protein, and one enzyme may work on one or more substrates and 
may be involved in many pathways. Consequently, there is no easy way to infer cellular 



regulation from metabolite levels, at least not for higher organisms, and especially not for 
efforts integrating transcriptomics and metabolomics levels24,25.  
 
Even for simple and well studied unicellular models, the dynamic of metabolism can only be 
modeled for a couple of seconds after a certain perturbation26. In eukaryotes, cellular 
compartmentation and metabolic specialization of organs further complicate any reasonable 
biological interpretation of findings beyond simple statements such as ‘the rate of glycolysis 
is increased’. Recently, a study on yeast metabolism under sulfur deprivation using a 
combined approach of proteomics and metabolomics revealed that predictions of use of 
pathways could not be made on transcriptomics or proteomics alone27.  
 
For higher organisms, it is a truism these consist of many organs, each organ may include 
many tissue types and each tissue type may comprise various cell types. All published reports 
so far support the notion that different tissue types comprise varying metabolomes. Different 
biological roles of individual cell types support the further expectation of detecting striking 
differences on the low-level spatial resolution, e.g. between trichome and epidermis cells or 
between parenchyma and bundle sheath cells in plants28. Lastly, intracellular organization of 
metabolism is also highly structured into compartments, each of which serves specific 
functions which lead to large metabolic differences. For this reason, in vivo measurements are 
highly advantageous to study both the dynamics and subcellular localization of metabolites in 
real time, such as with genetically encoded fluorescent nanosensors29. Another report on 
subcellular studies of metabolites focused on metabolite profiling of isolated chloroplasts and 
subfractions including the envelope, the stroma and the thylakoids in a study on the activity of 
three 13-lipoxygenases under stress conditions30. So far, the integration of metabolomics data 
with proteomic or transcriptomic data has not gone beyond simple correlation analysis or 
statistical discrimination of phenotypes or treatment parameters. This use of data is inadequate 
to fulfill the vision of Systems Biology which aims at a comprehensive understanding and 
regulatory modeling of the complex interrelationships of cellular organisms31, based on 
intensive computer simulations32 followed by subsequent experimental testing of hypotheses 
derived from such models. In order to enable metabolomics (or proteomics!) to be a useful 
tool in such endeavor, metabolites need to be analyzed at high temporal and spatial resolution 
under carefully designed experiments in response to a range of genetic or environmental 
perturbations (not just plus/minus type of experiments such as ‘sick vs. disease’). Today’s 
analytical methods still seem to be inadequate with respect to acquiring the full complement 
of metabolites at ultimate sensitivity and for multiple biological snapshots. Instead of 
metabolomics approaches, hypothesis driven approaches seem currently to be more feasible 
for integrating gene, protein and metabolite levels.  
 
5. Metabolic fluxes 
 
The result of metabolomic analyses is a series of measurements of metabolite levels: 
snapshots of metabolism. Recently, attempts have been reported to use stable isotope 
incorporation for better quantification of cellular metabolism33 whereas most researcher seem 
to utilize mature technology, such as GC/MS for high throughput profiling of steady state 
metabolite levels in yeast34, algae35 or plant cells36 . However, such measurements just 
represent one side of the coin to study pathway structures. For example, with isotope labeled 
intermediates and isotopomer analysis, the different contributions of central carbon metabolic 
pathways can be unraveled for simple cell types37. Metabolic snapshot data, however, are 
usually not sufficient to directly derive enzyme activities and hierarchical structures of 
pathways, although metabolic changes caused by lack of enzyme activities are sometimes 
directly interpreted as alterations in metabolic fluxes38. Generally, changes of metabolite 



levels may be due to drastically different causes: activities of membrane transport proteins 
may have been altered, rates of catabolism or anabolic reactions may have shifted, or branch 
point enzyme activities might have changed. Even if metabolite levels are found unchanged 
between different experimental situations, the underlying flux differences and enzymatic 
activities might still have changed. For example, if both anabolic and catabolic rates change in 
the same way and intensity, steady state levels of substrates and products involved in this 
reaction should not change although flux through the pathway would have clearly increased.  
 
Therefore, metabolite snapshot data should be complemented by flux data, which has been 
proposed to be best accomplished by in vivo nuclear magnetic resonance measurements39. In 
principle, it should be also possible to derive enzyme activities and fluxes from snapshot 
measurements if we had the ability to measure true concentrations of all substrates and 
products in fast intervals, assuming we would know the total network structure. In practice, 
however, metabolomic methods miss important intermediates unless methods are tailored to 
meet these requirements, e.g. by using a range of different tools and technologies. 
Furthermore, even if snapshots were taken in time series, and even if all substrates and 
products of a pathway were covered, we are still unable to unravel the flux structure, i.e. the 
activity of reversible reactions, futile cycles or other back flows of products into the pathways 
via other routes through the metabolic network). Consequently, potential new side fluxes out 
of or into pathways by unforeseen additional enzymatic activities can only be detected by use 
of labeled compounds, either employing radioactive stable isotope tracers.  
 
Unfortunately, these techniques are restricted in use by the need to feed in labeled substrates 
which (a) may not been taken up quickly enough into the cells and (b) are subsequently 
quickly diluted within the metabolic network. Therefore, only short distances or small parts of 
the total metabolic network can be imputed that have reasonably high metabolic turnover rates 
such as central C/N pathways in extremophiles40 or that lead to and from strong carbon sinks 
such as starch in plant cells. A potential outcome of such a flux study is depicted in figure 4, 
with the compound ‘A’ used as labeled starting point from which relative fluxes A  D and 
A P S can be followed. In this idealized map, the conclusion of such a flux study would be 
that the major flux of carbon is routed from A  S via the H O pathway but much less via 
the novel E Y3 pathway. Significantly less carbon was partitioned here to the A D 
pathway, and no net flux could be detected towards A M in this artificial study result. Still, 
such a biochemical map would only include 35 compounds, which comprises a realistic and 
achievable aims in today’s flux studies. A global view on all metabolic fluxes (a ‘fluxome’41) 
is still out of reach by current techniques, even if fluxes are inferred from other metabolic 
sinks such as proteins. Using current methods, a combination of metabolomic snapshot data at 
a high number of biological replicates (to get the breadth of metabolic networks at high 
statistical significance levels) and flux measurements (on select and important pathways42) 
therefore seem to present the most practical solution to reach a more complete picture of 
metabolic control and regulation 
 
6. Metabolic networks 
 
The topology of metabolic networks, as being computed from genomic information, already 
comprises information about general systems properties43. Differences in metabolic levels can 
be used to interpret potential changes in pathway regulation using such known pathways. 
However, in general, it is not feasible to directly infer the global biochemical pathways 
structure or regulatory organization from omics data or even labeled intermediates and flux 
data. Still, metabolomics data can actually be used for gathering information that is 
complementary to differences in metabolite levels or patterns between genotypes or 



treatments. Metabolomics workflows consist of one or many perturbations of a species with a 
number biological replicates per group according to the question and study design, and 
subsequently, data are compared by univariate and multivariate statistical means focusing on 
differences in average values between these statistical groups. However, one may ask if there 
actually is an average mouse, an average plant or even an average cell in a microculture? 
Since such a perfect average individual does not physically exist, how much biological 
interpretation and meaning can we generate out of the analysis of differences between 
averages of statistical groups?  
 
What these statistical methods usually ignore is the within-group variance, or the individuality 
of every given sample, for example by applying Bayesian likelihood calculations44, Pearson’s 
correlations45 or partial correlation analysis46 to construct undirected dependency graphs from 
metabolomics data. This is a complementary way of looking at the data, which allows 
constructing a snapshot of a metabolic network for a given biological situation reflecting its 
underlying regulatory structure. Two theoretical papers have outlined the origin and meaning 
of metabolite : metabolite covariance and correlation47,48, and some further reports have based 
biological conclusions from comparisons of metabolomic correlation networks49,50. The 
general outline of metabolic correlation networks is depicted in figure 5, from which it 
becomes clear that such networks hardly resemble the underlying biochemical network (figure 
1). However, when comparing correlation networks under different conditions (e.g. 
environmental perturbation I and II, left and right panel of fig. 5), such networks can still be 
utilized in several ways: (1) novel metabolites Y2-Y9 can be mapped to other compounds for 
which the biological role and cellular compartment is supposed to be known, thus hypotheses 
about these novel compounds can be generated in an easier way compared to flux studies. (2) 
Network topology differences emphasize differences in overall regulation and carbon 
partitioning. For example, compound A lost its dominant hub role under the hypothetical 
biological situation II, whereas metabolite B becomes much more connected to other 
compounds. Such findings can best be interpreted if further biological data are added, such as 
specific enzyme or transport activities, or activation of transcription factors that would elicit a 
range of biological pathways and therefore impact biochemically unrelated metabolites in a 
similar direction and magnitude. More detailed analysis might also focus on the strength (the 
statistical power) of a given linear relationship, or the slope of the linear regression (which is 
equivalent to the ratios of pairs of metabolites). Biochemically, changes in metabolite ratios 
(such as ADP/ATP or Glu/Gln) can readily interpreted as important physiological parameters. 
Correlation network analysis may add an overview on regulation of metabolite pairs, hence 
potentially bridging the analysis of metabolic snapshots (‘steady state levels’) to flux data by 
detailing the relative partitioning of metabolite pools under different biological conditions.  
 
There are further theoretical considerations that support this notion of utilizing within-group 
variance as surrogate for the actual dynamics of the intracellular metabolic network. All 
biological systems share network properties which are called ‘robustness and flexibility’. 
Cells are hit in short time intervals by stochastic factors such as influx deviations of external 
transport metabolites, intensity differences in environmental parameters or subtle physical 
interferences such as ‘wind’. Metabolic systems would become very unstable if each of these 
short-term pulses would be taken up in immediate responses. There are a number of 
regulatory steps that inhibit metabolic overreactions but instead introduce response lag times 
by using threshold systems, active transport steps, or reversibility of reactions. In total, these 
delay steps render the system to become ‘robust’ which is an important property to maintain 
the system at a given steady state. Complementary to such robust regulation of the network 
structure is the necessity to quickly alter metabolite levels depending on certain stress 
conditions or developmental needs. The responsible general system property is called 



‘flexibility’. System flexibility is a prerequisite of the capability to ‘control’ or alter defined 
steady states without affecting other parts of the system, depending on external or internal 
stimuli. Any system needs capabilities to react in a fast and coordinated manner on immediate 
needs and threats, even if the triggering signals for such needs are of low abundant and 
transient nature. Examples might be heat shock, wounding responses, or herbivore attacks, 
among others. Very fruitful research has been reported on a combination of a calculation of 
the metabolic feasibility space of prokaryotes and confirmation of predictions of system 
responses using flux data51. One further step comprises use of metabolite concentrations to 
inform the feasible parameter space of enzyme kinetics in yeast52. It is this kind of model-
based computation that needs further refinements and application for predicting metabolic 
responses in complex eukaryote systems and higher organisms. 
 
It is interesting to note that there is a difference in terminology between theory of metabolism 
and molecular biology. David Fell has pointed out in his famous book “Control of 
metabolism” (1997)53, that the terms ‘control’ and ‘regulation’ point to biochemical properties 
that are rather different in their respective meanings. Regulation is the ability of a complex 
system to maintain its basic properties (e.g. metabolite levels) independent of external factors 
that continuously try to push the system out of balance, whereas control was defined as a 
system property that enables changes between different states of a system. In this respect, 
terminology of metabolic theory reflects the understanding of network properties (flexibility 
and robustness), whereas in molecular biology, regulation and control are used as synonyms 
describing only the ability to change a system, but not how to maintain it. Examples of 
‘control’ are found in classic physiology. In terms of plant physiology, cold acclimation (by 
increased values in carbohydrates) or leaf senescence (altered ratios of catabolism versus 
anabolism) are examples of ‘control’ or ‘system flexibility’, whereas the tendency to keep 
metabolic fluxes in a narrow range under a given set of environmental parameters (the steady 
state) is an example for metabolic ‘regulation’ or system ‘robustness’. 
 
Apart from kinetics and flux rates, further properties of metabolic networks are the 
stoichiometric structure which may be used to define metabolic feasibility spaces for cellular 
growth, and connectivity54,55, which define the relative importance of metabolites as 
branching points to allow redirection and partitioning of the ratio of carbon, nitrogen, 
phosphor and sulfur between pathways, organs and compartments. Interestingly, metabolic 
correlation networks seem to reflect the different needs and partitioning between pathways 
and thus may enable bridging information that is derived from steady state levels and from 
flux information. However, so far information garnered from theoretical or experimental 
metabolic networks has not enabled probing biochemical pathway structure with the aim at 
detecting novel metabolic routes. At least, such work seems to be more feasible within the 
foreseeable future than meaningful integration with data from other omics approaches.  
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Figure legends
Fig. 1   Proposed workflow for a rapid annotation of unknown analytical signals in LC/MS or GC/MS metabolite 
profiles. Such schema might evolve as a general database query tool similar to MASCOT or SEQUEST in proteomics 
research, returning a list of tentative structures with an overall similarity score.   

Fig. 2   Left panel: Generalized metabolic pathway map (metabolites A-X) that may result from genomic 
reconstructions. Right panel: Result of a metabolite profiling study using a specific analytical technique. Six 
metabolites could not be detected (open squares) although these were supposed to be present by the reconstructed 
pathway map. In addition, nine novel metabolites were detected (Y1-Y9) which cannot immediately be mapped onto 
the pathway chart.

Fig. 3   Functional annotation of novel metabolites onto biochemical pathways depicted in fig. 2. Using a variety of 
genomic, analytical and biochemical experiments, pathways may be unraveled for some of the new compounds. Such 
pathway elucidations involve laborious wet laboratory work and thus leave many other uncommon metabolites without 
biochemical annotation.  

Fig. 4  Potential outcome of a flux study using the labeled metabolite ‘A’ from the biochemical pathway depicted in 
fig. 2. Differences in use of alternative biochemical pathways result from flux studies, enzymatic activities can be 
calculated and the involvement of novel metabolites (Y3) is confirmed. Usually, flux data are not obtained for more 
distant pathways, or pathways with low overall metabolic turnover.   

Fig. 5  Metabolic network graphs resulting from correlation or linearity analysis of metabolite pairs under two different 
conditions (left and right panel). Some correlations will reflect the underlying biochemical pathway structure depicted 
in figure 2, whereas other correlations refer to differences in overall metabolic regulation (e.g. by activation of 
transcription factors). Often, such network graphs enable generating improved hypotheses on the biological roles of 
pathways and known and novel metabolites (Y2-Y9). 
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