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Abstract

Metabolites are the end products of cellular regulatory processes, and their levels can be regarded as the ultimate
response of biological systems to genetic or environmental changes. In parallel to the terms ‘transcriptome’ and
‘proteome’, the set of metabolites synthesized by a biological system constitute its ‘metabolome’. Yet, unlike other
functional genomics approaches, the unbiased simultaneous identification and quantification of plant metabolomes
has been largely neglected. Until recently, most analyses were restricted to profiling selected classes of compounds,
or to fingerprinting metabolic changes without sufficient analytical resolution to determine metabolite levels and
identities individually. As a prerequisite for metabolomic analysis, careful consideration of the methods employed
for tissue extraction, sample preparation, data acquisition, and data mining must be taken. In this review, the
differences among metabolite target analysis, metabolite profiling, and metabolic fingerprinting are clarified, and
terms are defined. Current approaches are examined, and potential applications are summarized with a special
emphasis on data mining and mathematical modelling of metabolism.

Introduction

Even though the Arabidopsis thaliana genome has
been completely sequenced, over 30% of its genes are
not functionally classified according to sequence sim-
ilarities to other organisms, and only 9% have been
experimentally characterized (Arabidopsis Genome
Initiative, 2000). Moreover, of the genes believed
to be involved in plant metabolism, most functional
characterizations are not based upon rigid biochemical
testing. Gene assignments by sequence homology can
only give hints to putative functions, but are almost
certainly not specific enough to describe biochemical
functions and the underlying biological roles. For ex-
ample, gene duplication is responsible for many of the
enzyme isoforms that occur in different cellular com-
partments or that exhibit altered kinetic characteristics.
However, it is also possible that enzyme isoforms
arise with altered substrate specificity. Such changes
in specificity could explain the vast number of differ-
ent metabolites – up to 200 000 – that are estimated to
occur in the plant kingdom (D. Strack and R. Dixon,
personal communications). In parallel to the terms

transcriptome and proteome, the set of metabolites
synthesized by an organism constitute its metabolome
(Oliver et al., 1998). Teusink et al. (1998) also sug-
gested the systematic analysis of metabolic snapshots
as a valid approach towards a quantitative rather than
qualitative description of cellular regulation and con-
trol. Without having data from metabolomic analyses
at that time, such metabolic snapshots were defined
as the exhaustive extraction and quantitative analytical
determination of plant metabolites. Similarly to the
definition of the proteome or the transcriptome, the
metabolome can be defined on all levels of complexity,
such as organisms, tissues, cells or cell compartments.
Further, the environmental conditions under which
a biological experiment was carried out need to be
specified as exactly as possible.

The proportion of metabolites performing explicit
biological functions relative to those that do not is
unknown. Since many plant metabolites are family-
or species-specific, it is likely that at least some fulfil
important biological functions such as helping plants
to survive in specialized ecological niches. In order
to determine the function of such metabolites (and
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their corresponding enzymes), two basic strategies can
be applied, forward genetics and reverse genetics. In
forward genetic approaches, naturally occurring mu-
tants, mutagenized plants or dichotomous accessions
with interesting phenotypes can be used to identify
and characterize genes of interest. In reverse genetic
approaches, analysis begins with a cloned gene or
isolated protein and works toward the phenotype. Re-
gardless of the strategy employed, it is essential that
phenotypic effects be described as explicitly as pos-
sible. Our understanding of phenotype is based upon
what we can observe about the character of an or-
ganism, and, at last, can be observed at the metabo-
lite level. Since it is so important to precisely link
gene function to phenotype, several means have been
suggested for a precise description of metabolism,
including the concepts of metabolic control analysis
(Cornish-Bowden and Cárdenas, 2000) and individual
analysis of steady-state metabolite levels (Trethewey
et al., 1999). The requirements and current strate-
gies for the comprehensive and quantitative analysis of
the molecular phenotype have been recently reviewed
for all three levels of gene products (mRNA, proteins
and metabolites), including thoughts on database re-
quirements and informatic tools (Fiehn et al., 2001).
Unfortunately, metabolites have a much greater vari-
ability in the order of atoms and subgroups compared
to the linear 4-letter codes for genes or the linear 20-
letter codes for proteins. Therefore, they cannot be
sequenced like genes or proteins using (comparatively
simple) read-outs from one end to the other. Instead,
the elemental composition, the order of the atoms and
the stereochemical orientation have to be elucidated de
novo for metabolites in a complex manner. Moreover,
interpretation of metabolic data is complicated by the
convoluted nature of plant metabolism. Accordingly,
different analytical approaches have been designed in
order to answer specific types of questions. These
approaches are defined as follows.

First, to directly study the primary effect of a
genetic alteration, an analysis can be constrained ex-
clusively to the substrate and/or the direct product of
the corresponding encoded protein. Since all other
metabolites are incidental to this question, extensive
sample clean-up may be used, if needed, to avoid
interference from major accompanying compounds.
This strategy is called target analysis and is mainly
used for screening purposes, and for analyses call-
ing for extreme sensitivity such as the monitoring of
phytohormones.

Second, to elucidate the function of a whole path-
way or intersecting pathways, it is often not necessary
to view the effect of a genetic alteration on all branches
of plant metabolism. Instead, the analytical procedure
can be restricted to the identification and quantifica-
tion of a selected number of pre-defined metabolites
in a biological sample. Sample preparation and clean-
up can be focused on the chemical properties of
these compounds so as to reduce matrix effects. This
process is called metabolite profiling (or, sometimes,
metabolic profiling). For example, these pre-defined
metabolites may belong to a class of compounds (such
as polar lipids, isoprenoids, or carbohydrates), or be
narrowed down to members of particular pathways.
The term metabolite profiling is frequently used in the
specific context of drug research in the description of
catabolic degradation of an applied chemical.

Third, quite frequently, the repercussions of a
single genetic alteration are not limited to one bio-
chemical pathway. Indeed, the metabolite levels of
seemingly unrelated biochemical pathways may be al-
tered due to pleiotropic effects. In order to understand
these effects, a comprehensive analysis in which all
the metabolites of a biological system are identified
and quantified is needed. Since such an approach re-
veals the metabolome of the biological system under
study, this approach should be called metabolomics.
Metabolomic approaches must aim at avoiding exclu-
sion of any metabolite by using well conceived sample
preparation procedures and analytical techniques. The
resolving power of the analytical method chosen must
be high enough to maintain sensitivity, selectivity, ma-
trix independence, and universal applicability. Since
metabolomic data sets are complex by nature, ade-
quate tools are needed to handle, store, normalize, and
evaluate the acquired data in order to describe the sys-
temic response of the biological system. Furthermore,
true metabolomic approaches must also include strate-
gies to identify unknown metabolites, and might even
reach out to compare analytical results with models of
theoretical biochemical networks.

Fourth, to screen a large number of lines in ge-
nomic or plant breeding programmes, as well as to
enable diagnostic usage in industry or clinical rou-
tines, it might not be necessary to determine the
individual level of every metabolite. Instead, it is often
sufficient to rapidly classify samples according to the
origin or their biological relevance in order to maintain
a high throughput. This process is called metabolic fin-
gerprinting. Erroneously, such approaches have occa-
sionally been termed metabonomics. Such a misnomer
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could lead to confusion about the completely differ-
ent goals of fingerprinting and metabolomics or about
the metabolon, which terms the coordinated chan-
nelling of substrates through tightly connected enzyme
complexes. Sometimes, metabolic fingerprints have
enough resolving power to distinguish among individ-
ual signals that then can be related to sample classifica-
tion. However, this should not lead to the assumption
that with such techniques all or even the most im-
portant effects can be identified, since major events
might be obscured due to irreproducible matrix effects
during sample preparation and data acquisition.

A number of different applications of metabolomic
analyses can be imagined. Some are more obvious,
such as increasing metabolic fluxes into valuable bio-
chemical pathways using metabolic engineering (e.g.
enhancing the nutritional value of foods, decreasing
the need for pesticide or fertilizer application, etc.)
or into pathways needed for the production of phar-
maceuticals in plants (Giddings et al., 2000). Other
fields of applications are less obvious. For example,
metabolomic analysis could be applied to assessing
the substantial equivalence of genetically modified
organisms (World Health Organization, 2000) if the
metabolic phenotypes of a variety of well-known cul-
tivars (that are commonly believed to be safe) are com-
pared to transgenic plants. In addition, metabolomic
analysis will have a great theoretical impact on under-
standing metabolism, for example for the prediction
of novel metabolic pathways, and to describe cellular
networks in vivo. Finally, metabolomics might prove
a valid tool when investigating the cause of biological
effects, such as plant-pathogen interactions.

In this paper, current approaches to gaining meta-
bolomic data are reviewed, and the potential uses of
these data are discussed in the context of statistical
analysis, data mining and mathematical modelling.

Metabolomic sample preparation

When aiming at the simultaneous detection of all
metabolites in plant tissues, the applied methods can-
not be restricted to the technical question which type
of data acquisition might be most suitable but also
must seriously consider adequate methods for sample
preparation. As a first step for such methods, plant
physiologists have long been aware of the importance
of rapidly stopping the inherent enzymatic activity of
biological samples. This has been achieved by freeze
clamping, immediate freezing in liquid nitrogen, or

by acidic treatments using perchloric or nitric acid (ap
Rees and Hill, 1994). Although advantageous for ex-
traction of amines (Bouchereau et al., 2000), acidic
treatments pose severe problems for many analytical
methods that follow, and harvesting and depositing
plant tissues into tubes for liquid nitrogen freezing
may take up to 15 s. Compared to freeze clamp-
ing techniques, freezing samples in liquid nitrogen
is therefore a slower process that could potentially
produce artefacts caused by wound responses, rapid
activation of touch-inducible genes, etc. This might
especially be the case if samples are weighed before
freezing, and if no attention is paid to this special prob-
lem. Since freeze clamping is not easily applicable in
functional genomic programmes where lots of sam-
ples have to be harvested, freezing in liquid nitrogen
remains a reasonable way to stop enzymatic activity.
Certainly, great care must be also taken to avoid par-
tially thawing tissues before extracting metabolites.
One way to do this is to freeze-dry biological sam-
ples resulting in completely dried samples. In the
absence of water in the samples, enzymes or trans-
porters are unable to work. If stored before sample
extraction, samples have to be kept in dry environ-
ments like evacuated desiccators, since tissues are
highly hygroscopic which almost certainly will lead
to partial recovery of some enzymes like hydrolases.
Alternatively, frozen tissues can be directly extracted
by immediately adding organic solvents and applying
heat, thereby also inhibiting the recovery of enzymatic
activity. Extracting frozen tissues that still contain the
original amount of water might be advantageous for
metabolomic approaches when compared to extracting
freeeze-dried samples, since freeze-drying may poten-
tially lead to the irreversible adsorption of metabolites
on cell walls and membranes. If metabolomic analysis
sets out to distinguish between metabolite levels in dif-
ferent compartments, samples need to be freeze-dried
prior to non-aqueous fractionation methods (Gerhardt
and Heldt, 1984; Farré et al., 2001). An alternative
approach to non-aqueous fractionation is the use of
nuclear magnetic resonance analysis (NMR) to dis-
tinguish steady-state concentrations of metabolites in
different compartments in vivo (Roberts, 2000). Such
approaches will become increasingly important as it
is recognized that gene function cannot be assigned
without understanding the essential role of biochem-
ical pathway compartmentalization and without the
help of classical plant physiology.

However, no study directly comparing repro-
ducibility and recovery of the extraction of metabolites
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using frozen or freeze-dried samples has been pub-
lished in the context of metabolomic data acquisition.
For tissue cultures, a cold shock can be used in which
the liquids are infused into cold methanol, and all de-
vices needed for further sample preparation are also
kept at low temperatures (Gonzalez et al., 1997).
Prior to sample extraction, different types of sam-
ple homogenization can be used, depending on the
number of samples to be treated, and on the type of
tissue. Leaf tissues, for example, can be ground un-
der liquid nitrogen simply using mortar and pestle,
or using a ball mill with pre-chilled holders (Fiehn
et al., 2000a), or together with the extraction sol-
vent by ultraturrax devices (Orth et al., 1999). Other
plant organs such as roots, however, prove some-
times to be too hard to use for ball mills, whereas
potato tubers are too soft (Roessner et al., 2000). Af-
ter homogenization, different methods of metabolite
extraction could be used but, again, no systematic
study is available that directly compares the results
of these techniques. Most frequently, polar organic
solvents like methanol, methanol-water mixtures or
ethanol are directly added to freshly frozen tissues
(Johansen et al., 1996; Streeter and Strimbu, 1998),
with an additional step of using non-polar solvents
such as chloroform to exhaustively extract lipophilic
components. In order to enhance extraction efficiency,
additional energy is put into the system either directly
by heat (e.g. 70 ◦C), or by other techniques such as
pressurized liquid extraction (Benthin et al., 1999), su-
percritical fluid extraction (Castioni et al., 1995; Jarvis
and Morgan, 1997; Blanch et al., 1999), sonication
(Sargenti and Vichnewski, 2000), subcritical water
extraction (Gámiz-Gracia and de Castro, 2000), mi-
crowave techniques (Namiesnik and Gorecki, 2000),
or pervaporation (Starmans and Nijhuis, 1996). Rarely
data are available that compare these techniques and,
furthermore, few systematic studies have been carried
out on the occurrence of possible metabolite break-
down reactions caused, for example, by oxidation
(Peng and Jayallemand, 1991). The same holds true
for the question of sample storage, although it is gen-
erally assumed that alterations of metabolite levels can
be excluded during storage at −80 ◦C.

Data acquisition

Metabolite target analysis involves a combination of
techniques to prepare and analyse samples for one or a
small number of compounds from a complex mixture.

Often, the sample preparation techniques aim at pre-
concentration and purification of the metabolite under
study, before analysing it with a coupling of chro-
matography and a selective detector (such as liquid
chromatography coupled to fluorescence detection, or
gas chromatography coupled to sulfur chemilumines-
cence detection). Metabolite target analysis is clearly
the most wide-spread technique, and it is applied in all
areas of plant research (such as phytohormone analy-
sis). Since the concept of target analysis is clear, it
can be omitted from this review. The focus will be
narrowed to a discussion of the concepts and results of
multi-target profiling approaches and non-biased data
acquisition.

Metabolite profiling

Through the years many analytical methods have been
developed that are not restricted to the selective analy-
sis of one or a few compounds, but to the identification
and quantification of multiple targets, with the aim
of getting an overview of compound classes. With
the improved performance of chromatography meth-
ods in the late 1960s and early 1970s (improvements
in reliability, robustness, selectivity and resolution),
peak identification in complex matrices was made
possible based purely on retention times. These sep-
aration techniques were then coupled to highly sen-
sitive detectors that also had high dynamic ranges
for quantification, such as flame ionization coupled
to gas chromatography (GC/FID) or fluorescence and
UV detectors coupled to liquid chromatography (LC).
These analytical methods were soon applied to urine
samples and plant tissues to profile important com-
pound classes such as amino acids (Adams, 1974).
The concept of compound identification was extended
to retention time indices (Tanaka et al., 1980a) that
account for shifts in absolute retention times. In one
run, up to 155 organic acids could be detected in
order to diagnose human diseases in clinical routine
(Tanaka et al., 1980b). Also in the late 1960s, mass
spectrometry (MS) was improved to become as uni-
versal as flame ionization, with the bonus of offering
a completely independent method for compound iden-
tification and classification when coupled to gas chro-
matography (de Jongh et al., 1969). In clinical routine,
profiles of organic acids in urine samples could then be
used to diagnose fifty different human diseases simul-
taneously (Jellum et al., 1988). Research in this area
is still going on, aiming for a faster, more automated
and more reliable categorization of human metabolic
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disorders by computational constraints (Kimura et al.,
1999) or to detect patterns in metabolite profiles of
cancer-related tissues by clustering algorithms (Kim
et al., 1998). GC/MS analysis of patient tissues was
later extended to the simultaneous identification and
quantification of several compound classes such as or-
ganic acids, polyols, carbohydrates and amino acids
(Ning et al., 1996). However, it was also recognized
that metabolite identification that was based on mass
spectra could be obscured by low signal-to-noise ra-
tios for trace compounds, and by co-elution of major
compounds. Halket et al. (1999) utilized mass spec-
tral deconvolution software to increase reliability of
metabolite detections. For the first time, peak identifi-
cation of 68 pre-selected target compounds was based
on both purified mass spectra and retention time in-
dices in an automated and robust way, which was
applied to the rapid diagnosis of inborn errors by
clustering the data acquired with pattern recognition
tools.

In the plant field, less effort has been put into pro-
filing compound classes. Sauter et al. (1991) chose
peaks that apparently represent major compounds in
GC/MS chromatograms in order to get an overview of
major events in metabolism before and after pesticide
spraying. However, identification of minor compo-
nents such as lysine remained unreliable at that time.
Derivatization conditions for metabolite profiling were
optimized by selecting 12 compounds representative
of plant primary metabolism (Adams et al., 1999), and
were applied to profile polar organics (sugars, poly-
ols, acids and amino acids) in apricots (Katona et al.,
1999). These techniques were used more systemati-
cally to analyse the number of metabolites involved in
potato tuber primary metabolism by evaluating recov-
ery rates using spiking experiments and external cali-
bration curves (Roessner et al., 2000). Another step in
elucidating metabolism was taken by Christensen and
Nielsen (2000), who used GC/MS to profile the frac-
tional enrichment of 13C-labelled substrates in order to
study biochemical pathways. Metabolite profiling was
extended to subcellular compartments in potato tubers
by combining GC/MS, HPLC analysis of nucleotides,
enzyme assays and pyrophosphate target analysis after
non-aqueous fractionation (Farré et al., 2001). Such
compartmental analysis is clearly needed for under-
standing plant metabolism. However, as much as 4
g fresh weight of tissue was required for perform-
ing a density gradient and enzymatic and metabolite
determinations, therefore losing spatial resolution for
analysis of individual parts of plant organs.

Not all compounds can be nicely quantified by
GC/MS-based profiling methods. Thermolabile or
large molecules such as bis- and trisphosphates, CoA
adducts or lipids can only be detected after LC sep-
arations. For compounds that include double bonds
or aromatic substructures, the absorption of UV light
can be used. LC/UV profiles of isoprenoids (carotenes,
xanthophylls, ubiquinones, tocopherols and plasto-
quinones) have been used to characterize transgenic
and mutant tomato genotypes and for screening Ara-
bidopsis mutants (Fraser et al., 2000). By using arrays
of photodiodes, complete UV spectra are acquired
at sensitivities capable of producing read-outs with
samples as small as 1 ng injected onto the column.
Such spectra help identify compounds in complex
matrices. However, only extended systems of aro-
matic rings or conjugated double bonds have UV
spectra that are sufficiently specific to allow select-
ing unique wavelengths for sensitive quantifications
in crude plant extracts. Therefore, techniques that are
more selective have to be used that take advantage
of the unique physical properties of metabolites. In
the 1980s several attempts were made to vaporize and
to completely evaporate the stream of liquid effluents
from LC separations prior to entry into the high vac-
uum that is needed for MS. However, spray systems
like the thermospray or the particle beam interface
have shown to be too selective for universal applica-
tions like metabolite profiling. With the advent of the
electrospray interface in the early 1990s it could be
shown that the analytical precision of LC/MS systems
was high enough to reliably quantify polyols in cere-
brospinal and blood plasma samples. With the use of
stable isotope-labelled inositol as an internal reference
compound, 8–15% relative standard deviations could
be achieved (Shetty et al., 1995). In addition, the
application of LC/electrospray MS systems could be
successfully demonstrated for the analysis of ceramide
profiles. In crude lipophilic extracts from cultured
T-cells, detection limits were as low as 25 fmol/µl
(Gu et al., 1997). In order gain even better sensi-
tivities, ceramide profiles were first purified by au-
tomated multiple development/high-performance thin-
layer chromatography (TLC) prior to LC/MS quantifi-
cation (Raith et al., 2000). Ultimately, highly sensitive
metabolite profiles of certain compound classes can
be gained after separation by capillary electrophoresis.
Que et al. (2000) were able to quantify steroids in the
attomolar range when coupled to laser-induced fluo-
rescence detection and in the low femtomolar range
when coupled to MS.
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In pharmaceutical applications, metabolite profiles
are not aimed at monitoring the amount of certain
pre-defined compound classes, but at determining
the catabolic fate of administered drugs. A typical
example is the elucidation of the biochemical path-
ways of propanolol degradation in rats by LC/MS/MS
(Beaudry et al., 1999). In other applications, a combi-
nation of different techniques is used such as profiling
the degradation of linoleic acid in stored apples by
GC/MS, LC/MS/MS and LC coupled to radioactivity
detection (Beuerle and Schwab, 1999). Next, metabo-
lite profiling of certain pathways was attempted to
understand the directions and compartmentalization of
metabolite fluxes. By using LC/fluorescence, off-line
radioactivity measurements and NMR, such metabo-
lite fluxes were elucidated in maize root tips after ap-
plication of 13C- and 14C-labelled glucose (Dieuaide-
Noubhani et al., 1995). A nice example of how bio-
logical functions of metabolites can be assessed with
the metabolite profiling method has been shown by
Lim et al. (1999) who studied the catabolic fate of
tamoxifen, raloxifen and adatanserine by first captur-
ing metabolites by their affinity to bind on specific
receptors, then purifying the bound ligands by ultra-
centrifugation, before characterizing the metabolites
by LC/MS. In order to maintain the high throughput
required for pharmacological studies, stepwise MS
fragmentation studies were automatically carried out
by using an ion trap mass spectrometer and 8 min LC
run times.

Metabolomics

It is a big step from profiling a selected number of pre-
defined metabolite targets to the challenges implicit in
metabolome-oriented approaches. Metabolomic stud-
ies try to avoid biases against certain compound
classes by chemical structure or by apparent abun-
dance in the biological tissue. Rather, metabolomic
analyses define importance by the relative changes
in metabolite abundances in comparative experiments.
Therefore, it must be assured that the intensity of any
metabolite can directly be compared to the intensity
of this metabolite in another sample, independent of
matrix effects that are a notorious part of crude ex-
tract analysis. This can be achieved by reducing the
number of metabolites per time interval that are simul-
taneously subjected to the data acquisition instrument.
One way to do this is to reduce the complexity of
extracts by using simple fractionation steps (such as
lipophilic/hydrophilic separations), and by separat-

ing metabolites by means of suitable chromatographic
methods.

As compared to metabolite profiling studies,
metabolomic analyses will face the detection of peaks
without assigned chemical structures. Therefore, ap-
proaches to systematically identify unknown com-
pounds in a high-throughput way are needed. Some
approaches can be adopted by classical structure
analysis, such as mass spectrometry and nuclear mag-
netic resonance (NMR). For the de novo identifica-
tion of secondary plant metabolites, an on-line cou-
pling of LC separation to NMR and MS structure
analysis has proved to be very powerful (Wolfender
et al., 1998). For GC separations, however, de novo
identification strategies are less straightforward. GC
separations regularly use chemical derivatization to
increase metabolite volatilities. The resulting frag-
ments in mass spectra can be largely dominated by
the derivatized groups, afterwards. Secondly, the most
straightforward method to elucidate unknown struc-
tures is to start with information gained from the intact
molecule, such as size and elemental composition.
However, electron impact ionization is performed us-
ing energies well above the average energy needed to
disrupt chemical bonds. The resulting fragmentations
are highly characteristic of the chemical structures, al-
lowing mass spectra to be used for identification of
known compounds from mass spectra libraries. For the
most part, however, ions representing the intact mole-
cular structures are missing, therefore hampering any
de novo identification of unknown metabolites. Softer
ionization techniques can be used such as chemical
ionization, then regularly missing characteristic frag-
ments. Alternatively, derivatization techniques can be
applied that result at first in highly abundant fragments
that give direct information about the intact molecule
(pseudo-molecular ions). Fiehn et al. (2000a) used ter-
tiary butyldimethylsilyl derivatives of polar organics
to identify uncommon plant metabolites by looking at
the characteristic primary fragments at M-15 (methyl
cleavage) and M-57 (tertiary butyl cleavage). A total
of 30 compounds were identified de novo by calculat-
ing elemental compositions gained from quadrupole
mass spectral data, and interrogating chemical and
biochemical databases, afterwards. However, this ap-
proach was shown only to work for metabolites that
have one to four acidic protons, but not for larger
molecules such as sugars. Automated procedures are
yet to be developed that could tentatively identify
unknown peaks by combining the information de-
rived from mass spectral fragmentation patterns, iso-
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tope ratios, exact masses, structure generators and
(bio)chemical databases.

Apart from metabolite identification problems,
true metabolomic approaches need to be able to au-
tomatically analyse raw data files in an unbiased way.
As pointed out above, such files generally contain in-
formation in three dimensions, i.e. chromatographic
retention time, characteristics of the physical property
of the molecules (e.g. mass spectra), and intensities (to
quantify metabolite levels). However, when analysing
crude extracts, almost no compounds are eluted as
pure peaks, but are obscured by the presence of co-
eluting metabolites, which may have largely varying
intensities in different samples. Therefore, raw data
files need to be automatically searched for physical
properties that are unique to each metabolite, depend-
ing on its neighbouring peaks. Such software has been
developed by Stein (1999) for GC/MS files. It finds
model ions that best describe the elution profile for a
pure compound, and purifies the mass spectrum of this
compound from its neighbouring peaks by deconvo-
luting the overlapping mass spectra. With the purified
mass spectra, compound identities are then searched
against mass spectral libraries. Halket et al. (1999)
have used this software to enhance the reliability of
peak identifications in GC/MS runs, but without taking
the total number of peaks into account.

A first step towards the unbiased analysis of plant
GC/MS chromatograms with the aim of function-
ally characterizing plant mutants was performed by
Fiehn et al. (2000b). In Figure 1, such a profile
is shown for the lipophilic phase of an Arabidop-
sis leaf, with over 160 peaks being detectable in
the base peak chromatogram. Based on the detec-
tion of 326 distinct compounds (ranging from primary
polar metabolites to sterols), relative quantifications
were carried out for both identified and unidentified
compounds, after normalization to internal references
and plant tissue fresh weights. Different plant mu-
tants were compared to the corresponding parental
genotypic backgrounds, and the data were used for
statistical analysis as well as for defining metabolic
phenotypes that were derived from clustering tools.
However, the analyses still lacked the use of mass
spectral deconvolution techniques and, almost cer-
tainly, trace peaks were overlooked by this approach.
GC/MS analyses were also used for comprehensively
studying metabolism in potato tubers (Roessner et al.,
2001). In this paper, however, quantitative alterations
of only a few unidentified metabolites were taken into
account. Cluster analysis of metabolic phenotypes re-

vealed that the metabolic effects in tuber slices of
potato mutants could be partially complemented by
adding glucose. Another approach to identify gene
functions by extended chromatographic analysis was
performed by Tweeddale et al. (1998). After grow-
ing wild-type and mutant E. coli strains in minimal
media and 14C-labelled glucose, 70 metabolites were
separated by two-dimensional TLC (most of them re-
mained unidentified). The relative quantification of
metabolites was carried out by radioactivity detec-
tion. However, explanations of the observed changes
in metabolite pools could only be partly ascribed to
the function of the mutated regulatory gene.

Whatever the analytical methods used, sample
preparation protocols will remain the step that is most
prone to errors. Both extraction and analytical data ac-
quisition techniques of metabolomic approaches must
compromise between several compound classes and,
therefore, cannot be as precise as the more sophisti-
cated processes that are dedicated to metabolite profil-
ing or target analyses. Instead, metabolomic analyses
have to be regarded as ‘quick-and-dirty’ methods that
try to be as comprehensive and as fast as possible,
but that almost certainly will not be ideally suited for
precise and reproducible determination of each of its
metabolites.

Metabolic fingerprinting

If rapid classification of sample types is needed,
for example for diagnostic purposes, product qual-
ity control, or screening of mutant collections, even
faster methods can be applied. The general idea be-
hind metabolic fingerprinting is that, even without
any chromatographic separation the resolution power
of nuclear magnetic resonance, MS or infrared (IR)
spectroscopy is still good enough to yield valid in-
formation about the net result of metabolic regula-
tion in the biological sample. For example, bacteria
species could be classified by pyrolysis-MS (Taylor
et al., 1998), but it remained unclear if this classifica-
tion could be achieved when mixtures of bacteria are
analysed. Using a combination of pyrolysis-MS and
Fourier transform IR spectrometry, bacteria species
have been classified with novel programming tools,
and biomarkers were identified that were directly dis-
tinguishing these species (Goodacre et al., 2000).
Also, with the aim of discrimination between species,
Smedsgaard and Frisvad (1996) used direct injection
tandem mass spectrometry of crude extracts to distin-
guish ten different fungal species. Nuclear magnetic
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Figure 1. Lipophilic phase of Arabidopsis thaliana leaves analysed by GC/quadrupole MS (unpublished results). Inspection of peaks apparent
in the base peak chromatogram results in 160 distinct metabolites. Abundant peaks in the middle of the chromatogram are methylated fatty
acids. At the end of the chromatogram, trimethylsilylated sterols are eluted.

resonance (NMR) has also been used without prior
separation of individual compounds, in order to clas-
sify rats that had been dosed with different amounts
of various toxins using direct analysis of their dried
urine samples (Robertson et al., 2000). Classification
was achieved through principal component-analysis
(CPA), and toxic effects on rats could be detected at
much lower levels compared to visual inspection of
the rat phenotypes. NMR analyses were also used to
study metabolic effects after administering toxins to
earthworms (Warne et al., 2000). The data acquired
were evaluated by means PCA and hierarchical clus-
tering. Elevated levels of glucose and the TCA inter-
mediates citrate and succinate were noted as potential
biomarkers for toxicity. Such statements, however,
had better serve as examples of potential pitfalls of
the over-interpretation of metabolic fingerprints since,
aside from toxic effects, there are a lot of biological
causes of elevated levels of TCA intermediates. NMR
was also used for metabolic fingerprints to detect dif-
ferences between mutated yeast strains (Raamsdonk
et al., 2001). It was shown that discriminatory analy-
sis increased the classification power compared to

PCA. However, additional enzymatic analyses were
needed to quantify levels of individual metabolites.
Gavaghan et al. (2000) used NMR analysis of dried
urine samples in order to find biomarkers that classify
different sample origins from phenotypically normal
mice. Chemometric techniques were included to re-
trieve information from the raw NMR data, and some
differences were found for TCA cycle intermediates
and metabolites of the methylamine pathway. In an-
other approach, IR spectroscopy was applied to find
differences between fruits of tomato plants that were
grown under salinity stress or under normal conditions
(Johnson et al., 2000). The application of unsuper-
vised PCA did not reveal clear clusters. However,
supervised learning methods (partial least square, ar-
tificial neural networks, genetic programming) were
able to correctly classify samples after being trained
by samples with known classification. It was empha-
sized that only ‘genetic programming’ (Gilbert et al.,
1997) gave interpretable explanations for the route
from deconvoluting the raw analytical data to classi-
fying samples. By genetic programming, the authors
found nitriles to be the main factor that distinguished



163

Figure 2. Cluster analysis of a hypothetical experiment. Clustering
of the samples by principal-component analysis might result in the
expected separation of samples from origin A (such as wild-type
samples) and from origin B (such as mutant samples). In this exam-
ple, B samples fall into two sub-groups, B1 and B2, as indicated by
covers (dotted lines).

stressed tomato plants from unstressed plants. Due
to the lacking resolving power of IR spectroscopy,
however, it remained by necessity unclear if other
metabolite classes were also up- or down-regulated
in stressed plants. It would be interesting to study
such samples by techniques that have higher resolving
power. By Fourier-transformed ion cyclotron reso-
nance mass spectrometry (FT-MS), for example, small
metabolites could potentially still be distinguished that
are only 0.005 Da apart in their accurate masses. Ad-
ditionally, high mass accuracies could be obtained,
which would allow the simultaneous identification of
most small metabolites that appear in FT-MS mass
spectra. Relative quantifications in comparative exper-
iments, however, might be more prone to error than
FT-MS metabolic fingerprinting for two reasons. First,
before metabolites reach the mass spectrometer, they
need to be ionized. The efficiency of the ionization
process of individual metabolites, however, can be
severely affected by ion co-suppression caused by ma-
trix effects. Secondly, ion repulsion might occur if too
many metabolites are present within the cyclotron si-
multaneously. Nevertheless, FT-MS or high resolution
time-of-flight mass spectrometers might serve as pow-
erful tools for screening mutant collections to identify
major alterations in biochemical pathways rapidly.

Data mining

The primary objective of metabolomic analysis is to
associate the relative changes in quantitative metabo-
lite levels with functional assignments. Mostly, more
than subtle effects can be expected from a mutation,

although quite frequently no apparent visible pheno-
type can be observed. To test this starting hypothesis,
the first and most important question to answer is
whether or not the data acquired can be grouped ac-
cording to the design of the comparative experiment,
i.e. if the samples clearly fall into clusters according
to the sample origins (healthy/diseased, stressed/non-
stressed, mutant/wild type, and so on). If this is not the
case, the data acquisition might have been obscured
by either sample preparation faults or low analytical
precision during data acquisition. Eventually, subtle
mutations that result in silent phenotypes might not
render a clear clustering result by any common means
such as principal component analysis (Fiehn et al.,
2000b; Roessner et al., 2001) or discriminatory analy-
sis (Raamsdonk et al., 2001). For such cases, further
methods need to be developed that unravel potential
differences between the populations being studied. In
case cluster analysis results in clear patterns, it has
to be tested if any subgroups can be seen within the
corresponding major clusters that might be related
to distinct processes within the experimental set-up,
or the sample processing and data acquisition. For
example, clusters could be related to the individual
trays if two trays of wild-type plants were to be com-
pared to two trays of mutant plants, or clusters could
be found according to the date of data acquisition,
indicating systematic errors within the analytical in-
struments. There is no accurate threshold value for
defining clusters, but one can be guided by visual
interpretation of clustering results. In Figure 2, the
potential outcome of PCA is exemplified for a hy-
pothetical experiment. Samples that originated from
type A are clearly separated from samples of type
B; however, within B there are visible sub-clusters
of B1 and B2. Once such sub-clusters are clearly ob-
served, B can no longer be regarded as one population.
Such a finding would render the experimental results
artefactual if the underlying causes of clustering can-
not be assigned (such as alterations in the conditions
for B1 and B2, that were present during sample gen-
eration or data acquisition). Once the existence of
clusters within the samples is assured, classical sta-
tistics such as Student’s t test or multiple analysis of
variance (MANOVA) can be applied in order to find
statistically significant differences of metabolite lev-
els between the clusters. Interestingly, ap Rees and
Hill (1994) also stress the importance of sound sta-
tistical approaches for protein quantifications, since
large biological variations (20–40% RSD) are found
for concentrations of important plant enzymes, such
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as PEP carboxylase, pyruvate kinase and PEP phos-
phatase. Numerous software packages exist that assist
the application of statistical tests but, whenever pos-
sible, experienced statisticians should be consulted to
question the validity of the approaches chosen. Specif-
ically, the independence of sample generation has to
be critically evaluated. For example, if three leaves
from each of six plants were harvested and analysed,
this does not add up to 18 independent samples, since
the leaves originated from only six plants. Further,
if, for example, 30 independent samples were pooled
into six groups before data acquisition (which might
be needed to reduce costs or analytical run times), the
results may only be treated as 30 independent observa-
tions if any influence of the analytical process can be
excluded. This might be important for the evaluation
of the accuracy of the mean (using the standard error
instead of the standard deviation), which is allowed by
the centre limit theorem starting at N = 30. For results
gained from mRNA quantification, however, errors
produced by the analytical procedure have definitely to
be taken into account, since precisely reproducible hy-
bridisation experiments are difficult to obtain (Vingron
and Hoheisel, 1999). Even for metabolite profiling re-
sults, this hypothesis is questionable since the analyt-
ical process does not only include the data acquisition
part, but also sample extraction and preparation parts,
where significant errors may have occurred.

The next question is, do any relationships be-
tween the variables exist? Again, practitioners of
metabolome analysis might learn from approaches of
mRNA expression experiments, which have been sum-
marized in recent reviews (Bittner et al., 1999; Brazma
and Vilo, 2000). Often, analysis follows the paradigm
that variables (e.g. genes) of similar functions clus-
ter together, and they share common roles in cellular
processes (Eisen, 1998). Recently, the robustness of
clustering algorithms have been improved by comput-
ing the optimal number of clusters in arbitrary gene ex-
pression data sets (Lukashin and Fuchs, 2001). When
compared to known classifications, 90% of the genes
from a yeast cell cycle data set were correctly grouped
into the corresponding clusters. However, non-trivial
results may also be obtained if rule-based learning
methods are applied. Gilbert et al. (2000) have shown
how new biological hypotheses can be obtained from
re-analysis of data that are deposited in publicly acces-
sible data banks. Instead of clustering data according
to similarities of abundance, variables in gene expres-
sion data sets can be correlated in a more rigorous
statistical way in direct pair-wise comparisons. Butte

and Kohane (2000) have applied entropy measure-
ments on a data set of 79 measurements of 2467 yeast
genes to calculate the inherent mutual information and
to visualize the resulting gene-gene correlation net-
works by graphs instead of phylogenetic-type trees.
Graph tools have been developed in order to visu-
alize biochemical pathways by edges and nodes that
are automatically structured in the forms of metabolic
cycles and hierarchies (Becker and Rojas, 2001).
However, the information power of graph visualiza-
tion rapidly decreases with increasing total numbers
of edges and nodes. In a study on pairwise metabolite-
metabolite correlations in a metabolomic data set,
1.5% of all theoretical correlations could be found as
linear relationships (Kose et al., 2001). In order to
maintain the structural information inherent in the re-
sulting metabolic networks, graph visualization was
performed in clique-metabolite matrices instead of
using edges and nodes. It was shown that closed sub-
graphs, isolated groups and missing edges can easily
be found by computing cliques.

Metabolic modelling

Once metabolomic data have been acquired and
analysed by data mining tools, they need to be inter-
preted. One way to do so is to intercalate biochemical
pathways, whether or not the alterations of metabo-
lite levels or clustering results can be understood by
known aspects of enzymatic regulation. Ogata et al.
(1999) have described in detail the publicly avail-
able genomic KEGG database that includes links to
the encoded enzymatic pathways. Another approach
to understanding metabolic phenotypes could be a
comparison of predictions suggested by theoretical
considerations. Three different existing approaches
might be used to predict the metabolic effects of ge-
netic alterations: first, calculations based on metabolic
flux measurements; second, calculations of metabolic
feasibility spaces using knowledge of metabolic sto-
ichiometries of enzymatic reactions; and third, cal-
culations based on enzyme kinetics. In the following
sections, the first two approaches will be reviewed and
compared as to their potential use for understanding
metabolomic data sets.

Modelling based on metabolic flux measurements

For decades researchers have tried to understand the
cellular regulation of metabolism by experimentally
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determining absolute and relative fluxes through bio-
chemical pathways, either in order to understand the
control that is held by individual enzymes of a path-
way (metabolic control analysis, MCA), or in order
to determine the relative impact of bi-directional re-
actions in branched networks (metabolite balancing).
In MCA, the response of a biological system on incre-
mental changes of system parameters is determined, in
order to gain quantitative knowledge of the fractional
control of flux that is held by all the enzymes of a se-
lected pathway. The theory of MCA was introduced
by Kacser and Burns (1973, reprinted with addi-
tional comments in 1995) and Heinrich and Rapoport
(1974). Developments in both theory and practical
applications have been comprehensively reviewed in
an excellent book by David Fell (1997), emphasiz-
ing the replacement of the bottleneck or pacemaker
theory of enzymatic control through the more appro-
priate quantitative description of the control that is
shared by all the enzymes of a pathway in a distinct
biological situation. The importance of this change
in paradigm cannot be overestimated, especially for
molecular biologists who try to metabolically engi-
neer plants by altering the gene expression level of
a single encoded enzyme. Despite its sound theoret-
ical basis and successful practical applications (Groen
et al., 1986; Giersch, 1995; Krauss and Quant, 1996;
Thomas et al., 1997; Poolman et al., 2000), MCA
is still not a regular tool in plant studies. Potential
reasons for this may be found in practical difficulties
that researchers encounter who try to determine and
to utilize MCA control coefficients, which have been
summarized by ap Rees and Hill (1994). At the bottom
line of MCA, in vivo metabolite fluxes are determined
in response to changes of system parameters (e.g. by
altering enzyme activities using inhibitor titrations).
These measurements have then to be accompanied by
determining either the maximum catalytic activities
enzymes, or assessing absolute metabolite concen-
trations. None of these measurements is easy to be
accomplished. With respect to flux measurements,
either a certain substrate is added, and the rate of prod-
uct accumulation is measured, or the distribution of
a labelled substrate is followed through a metabolic
pathway. Since the uptake of the added substrates
must be ensured, flux measurements are more eas-
ily carried out in cell cultures than in whole plants.
Even if isolated plant organs are used, MCA studies
are best performed for short, unbranched chains of
enzymatic reactions since plant metabolic pathways
are both highly branched and compartmentalized. Kell

and Mendes (2000) made several critical remarks on
further limitations of metabolic control analysis, for
example that predictions based on metabolic con-
trol analysis only hold true if changes in enzymatic
activities are small. This underlying paradigm is def-
initely not valid, however, when knockout mutants
or plants over-expressing or under-expressing a gene
are analysed. Drastically altering an enzymatic control
coefficient will not only change its own control over
flux, but also all other control coefficients. Therefore,
it is generally concluded that the activities of several
enzymes must be altered in biotechnological appli-
cations. Unfortunately, moving metabolic fluxes to
unproductive pathways is more likely than to stimulat-
ing the flux through the desired pathway (Trethewey,
1998). Furthermore, pathways may not be as well
conserved as textbooks suggest. Paralogues (enzymes
with high sequence homology in different organisms)
may well serve different biochemical functions or even
have different cellular roles. Finally, enzyme activities
determined by in vitro assays may be quite different
from in vivo situations, where even the basic assump-
tion of metabolic control analysis, the independent
action of enzymes, may not hold true. Instead, it has
been assumed for a number of biochemical pathways
that enzymes work in a tightly coordinated manner and
in closely connected enzymatic complexes, so-called
metabolons (Srere, 1985). This mechanism results in
channelling metabolites through metabolic pathways
rather than in making substrates available for several
competing enzymes in a diffusion-controlled manner.
This hypothesis is difficult to prove experimentally be-
cause enzymes tend to dissociate during isolation and
dilution. However, fusion proteins of the tricarboxylic
acid (TCA) cycle have been immobilized that show
possible kinetic advantages of such metabolons (Velot
et al., 1997). In this study, computer modelling has
also shown that substantially interacting surface ar-
eas stabilize the TCA metabolon thermodynamically.
Although several of these constraints might be solv-
able by expanding the current state of MCA theory
(Fell, 1997), metabolomic data sets of relative regu-
lation of metabolites rather than determining absolute
concentrations yet do not seem to be directly applica-
ble to MCA. Instead of trying to expand metabolomic
data acquisition to determination of absolute concen-
trations, the use of relative quantifications can also
be justified by theoretical background. As early as
1963 it was proposed that calculating ratios of steady-
state metabolite levels would give a better indication
for flux changes in metabolic pathways, since the
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quotient becomes dimensionless and could readily be
used for assessing homeostasis of metabolism (Bücher
and Rüssmann, 1963). However, it took as long as
the 1990s before Hofmeyr extended metabolic control
analysis to quotients of metabolite levels by defin-
ing co-response coefficients (Hofmeyr et al., 1993,
1995; Hofmeyr, 1995) although it might still be best
applicable to fairly simple and unbranched systems
(Cornish-Bowden and Hofmeyr, 1994). Still, all cal-
culations of co-response coefficients are performed
on averages of steady-state metabolite quantifications
(see Raamsdonk et al., 2001). Only recently, the
idea of taking advantage of the biological variability
inherent in metabolic snapshots was taken one step
further. Instead of losing information in the process
of averaging metabolite levels, each metabolite pro-
file represents a true and valid response of metabolism
upon subtle (but unknown) changes in parameters of
the system. By computing correlation coefficients of
metabolite-metabolite plots, the detection of home-
ostatic regulation of metabolite ratios could be set
onto a more rigid statistical basis (Arkin et al., 1997;
Roessner et al., 2001; Kose et al., 2001). A compu-
tation of metabolic models based on a combination of
co-response MCA theory and experimentally detected
metabolomic correlations, however, remains to be
shown. As pointed out above, the use of labelled over
unlabelled substrates is advantageous for flux mea-
surement (and may also be applied in metabolomic
analysis). A further rationale for the use of labelled
compounds is that net fluxes can be obscured by the
bi-directionality of enzyme reactions. In a rationale
making use of this bi-directionality, the fractional im-
pact of (branched) pathways leading to biosynthesis
of the investigated metabolites can be calculated by
determining the steady-state distribution of labelled
atoms. This method is called ‘metabolic balancing’.
In practice, isotope labelling in metabolic balancing
is often performed by growing a culture on 13C-
glucose and making time-dependent measurements of
the flux of incorporated 13C by NMR or (less fre-
quently) MS (Szyperski, 1998). If NMR fine structures
of 13C-enriched metabolic intermediates are studied,
the analysis of the position of the incorporated 13C
atoms enables mathematical modelling of the contri-
bution of different pathways to the metabolic cycles
(Schmidt et al., 1997; Klapa et al., 1999; Parket al.,
1999). All these authors emphasized that NMR analy-
ses proved to be more powerful compared to MS-
based approaches, since it is much more difficult (and
sometimes impossible) to obtain positional informa-

tion of the incorporated 13C atoms from interpretation
of mass spectral fragmentation. However, it was also
emphasized that MS applications are more rapid and
can also be utilized to obtain isotopomer information
(Dauner and Sauer, 2000) when matrix corrections are
carried out for natural isotope abundance. In a series of
papers, Wiechert et al. (1997a, b, 1999) and Möllney
et al. (1999) developed a generalized mathematical
model to describe the bi-directional flow of metabo-
lites in small metabolic networks after 13C labelling.
Different numerical approaches have been developed
to transform the interpretation problem of NMR data
by statistical analysis (such as covariance matrices) in
order to determine the order of magnitude of exchange
fluxes in practical situations. Finally, Möllney et al.
(1999) compared the results of the generalized models
for data that have been gained by either NMR or MS.
This work demonstrated that information provided by
isotopic fractional enrichments (the fraction of to-
tally incorporated 13C into a molecule, i.e. isotopic
ratios) can be as valuable as positional information.
Both methods were evaluated for their appropriate-
ness for use in metabolic engineering (Christensen
and Nielsen, 1999), emphasizing the importance of
gaining information on relative directions and relative
intensities of metabolite fluxes using positional iso-
tope enrichments. These authors also pointed out that,
based on enzyme stoichiometric considerations (see
below), there is a need for information on absolute flux
constraints, such as the availability of NADPH and
other energy-related metabolites. Yet, no metabolomic
analysis of steady-state distribution of labelled atoms
has been undertaken in order to analyse the relative
impact of branched pathways in large metabolic net-
works on individual metabolite levels. However, such
an experiment would pose both practical and theoreti-
cal challenges that seem to be difficult to be met in the
near future.

Neither MCA nor metabolic balancing make ex-
plicit use of kinetic information. Mendes and Kell
(1998) developed a software tool in order to simu-
late the behaviour of metabolic pathways by optimiz-
ing parameters in kinetic models. In agreement with
Christensen and Nielsen (1999), these authors em-
phasize that levels of important metabolites (such as
NADPH) cannot be assumed to be constant, or every
extrapolation to situations outside the standard envi-
ronments would become meaningless. However, an
extensive survey of the use of kinetic data for predic-
tion of metabolic systems is beyond the scope of this



167

review, which aims at exploring practice and potential
applications of metabolomic analysis.

Modelling based on biochemical stoichiometry

The use of classical MCA approaches to under-
stand large metabolic networks may therefore be lim-
ited. Furthermore, mathematical models have so far
only been applied to relatively small parts of plant
metabolism (Gombert and Nielsen, 1999), and the par-
adigm of steady-state conditions that forms another
basis of metabolic control analysis is also questionable
(Giersch, 2000). In order to build models for large bio-
chemical networks, some further simplifications have
to be carried out, such as using matrix calculations of
overall substrate-product stoichiometry (Kholodenko
et al., 1995). Cornish-Bowden and Eisenthal (2000)
emphasized the importance of the reliability of stoi-
chiometric ratios when used for computer simulations
and demonstrated that with such calculations, new
links or non-obvious links in biochemical pathways
could be found. In two excellent break-through papers
by Edwards and co-workers (Edwards and Palsson,
2000; Edwards et al., 2001) it was shown that pre-
dictions based purely on stoichiometry metabolic ma-
trices could be demonstrated by growth rate data from
Escherichia coli mutants. In 86% of the cases stud-
ied, the effects of gene knockouts in E. coli could be
shown correctly by growth rate data of E. coli mutants
reported in the literature. In a series of related papers,
Pfeiffer et al. (1999), Schuster (1999) and Schuster
et al. (1999, 2000) described the concept of elemen-
tary flux mode. Biochemical pathways were rational-
ized into thermodynamically and stoichiometrically
feasible subsets of enzymes that each generate valid
steady states. This approach does not require infor-
mation on enzyme activities or enzyme kinetics, and
the results must therefore remain qualitative. However,
this approach gives a solid basis for definitions of bio-
chemical pathways, which are otherwise more likely
to be defined by biochemical interpretations than by
direct biological feasibility. Another approach to de-
termine metabolic pathways was taken by Goryanin
et al. (1999) who attempted to optimize parameters
and fit experimental data sets to stoichiometric as-
sumptions that are retrieved from biochemical and
genomic databases. Certainly, such models will lack
predictive power since the objective is only to calcu-
late if metabolite fluxes are feasible or non-feasible,
without detailed knowledge indicating the likelihood
that the required fluxes could also be achieved in prac-

tice. However, the idea of trying to accurately predict
the behaviour of metabolic networks has also been at-
tacked from a completely different scientific direction.
It has been proposed that biological systems in general
might be hard to predict, since a lot of regulatory sys-
tems are forming closed circuits, which might only be
stable when oscillating between two (or more) differ-
ent states allowed (Bersini and Calenbuhr, 1997), and
the existence of two steady states has also been shown
for the photosynthetic Calvin cycle (Poolman et al.,
2001). Therefore, even further simplifications might
be considered when analysing metabolic networks.
One approach was considered by Fell and Wagner
(2000), who suggested the use of graphical visual-
ization of metabolite-metabolite interactions (derived
from known enzymatic conversions) using the power-
law connectivity theorem. When analysing E. coli
metabolism, glutamate was found to be the central
metabolite, and the authors found this as an indication
for potential uses in evolutionary studies. By similar
theoretical considerations, Barabási and co-workers
have shown that metabolic networks are organized in a
scale-free manner, indicating a high robustness against
random errors (e.g. mutations) but a high vulnerability
to directed attacks (Albert et al., 2000; Jeong et al.,
2000).

Conclusions

Metabolomic analyses have just begun. With today’s
powerful analytical and computational systems, the
experimental outcome of systematic changes to plant
systems can be followed in a comprehensive way.
However, the combination of analytical results from
all levels of gene products (transcriptome, proteome,
and metabolome) remains more vision than reality.
Even though metabolomic analysis is comparably fast
and cheap, reliable and precise, the unambiguous and
simultaneous identification of all metabolites in a bi-
ological system is a challenge. The ultimate goal is
to understand and to predict the behaviour of complex
systems (such as plants) by using the results obtained
from data mining tools for subsequent modelling and
simulation. Theoretically, it should be possible to
link metabolomic changes in biochemical pathways
to the enzymes involved, and then to the underly-
ing genetic alterations. So far, such results have not
been published, and current approaches to data min-
ing and mathematical modelling are not prepared to
compute metabolomic data. It is not clear how mod-
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els derived from metabolic control analyses can be
improved to utilize metabolite data from a number of
metabolic snapshots rather than from 13C-flux analy-
sis, or if the power of stoichiometric models can be
enhanced to make use of experimentally determined
metabolite-metabolite ratios. Finally, if metabolomic
profiling is to be used to its fullest, it is imper-
ative that publicly available metabolomic databases
be created. Metabolomic data are rich in informa-
tion, and there is considerable interest in re-assessing
previously acquired data under different perspectives.
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