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Abstract. Unbiased metabolomic surveys are used for physiological, clinical 
and genomic studies to infer genotype-phenotype relationships. Long term re-
usability of metabolomic data needs both correct metabolite annotations and 
consistent biological classifications. We have developed a system that combines 
mass spectrometric and biological metadata to achieve this goal. First, an XML-
based LIMS system enables entering biological metadata for steering laboratory 
workflows by generating ‘classes’ that reflect experimental designs. After data 
acquisition, a relational database system (BinBase) is employed for automated 
metabolite annotation. It consists of a manifold filtering algorithm for matching 
and generating database objects by utilizing mass spectral metadata such as 
‘retention index’, ‘purity’, ‘signal/noise’, and the biological information class. 
Once annotations and quantitations are complete for a specific larger 
experiment, this information is fed back into the LIMS system to notify 
supervisors and users. Eventually, qualitative and quantitative results are 
released to the public for downloads or complex queries. 

1   Introduction 

Technology advances during the last decade have opened new ways to approach 
cellular phenotypes. These advances are summarized today as ‘-omics’ platforms 
which generate quantitative and qualitative data on cellular components such as 
mRNA transcripts, proteins, or metabolite levels (metabolomics [1]). Metabolomics is 
a comparatively inexpensive though reliable and informative tool to monitor 
metabolic states in a variety of different genetic or environmental perturbations. Both 
for testing and for verifying biological hypotheses, a number of explanatory variables 
and background information is needed to assist the interpretation (or induction) 
process. Specifically, there is no way to use data from –omic databases without 
explaining which biological designs were underlying the experiments. With other 
words, data without metadata are junk. It is a general consensus that scientific 
experiments and conclusions must be at least explained in such a way that, in 
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principle, the experiments could be repeated. However, labeling experiments with 
(biological) metadata is clearly lagging behind descriptions of processes in the data 
generating technical platforms. It is just now that the metabolomics community has 
started to develop standards tracking the way from sample to sample processing, data 
acquisition, data export and normalization to statistics. The ArMet group [2] proposed 
a generalized framework including various modules to describe a metabolomics 
experiment. This framework does not detail which (biological or instrumental) 
metadata are essential to re-use metabolomic experiments for other queries or under 
other perspectives, and which ontologies need to be used. A related opinion statement 
on the minimal requirements for a metabolomic experiment (MIAMet) emphasizes 
the importance for traceable metabolic annotations [3] but does not further embark on 
biological metadata. A similar trend is seen in the more mature fields of proteomics 
(the PEDRo standard [4, 5]) and transcriptomics (the MIAME standard [6). For gene 
expression experiments, a study-annotator has been developed for describing 
experimental designs [7]. However, users need to fill 25 forms which relate to 68 
tables, and understand and follow pre-defined ontologies that are not authorized by a 
wide consensus in the biological community.  

For metabolomics, an extensive discussion forum is formed by the international 
working group on Standard Metabolic Reporting Structures (SMRS) led by the 
Imperial College, London, UK [8]. It was summarized in the 2.2 version of the draft 
document that ‘It should be clear from the previous discussion that the state of 
biological standardisation for metabonomics experiments is currently non-existent.’ 
[9] The very reason for this inadequacy may be the sheer difficulty to design a 
comprehensive yet simple schema (and user front end!) to capture the ingenuity of 
experimental designs in biology. We here present pragmatic solution that helps 
biological researchers defining their experimental design in a coherent and logical 
metadata structure, with a focus on user friendliness. Together with instrument-related 
metadata, this design information is used to generate the sample sequence schedule, to 
define the validity of detected metabolic peaks and to form the basis for statistical 
treatments of result data. However, we do not envision a direct comparability of the 
actual data readouts between different experiments: there are no two biological 
experiments that are totally identical. In fact, it is even difficult to achieve identical 
results from independent replica setups of experimental designs within a given 
biological laboratory. The reason for this difficulty in comparability is that there are 
many fuzzy factors contributing to the actual (metabolic) phenotype of a given 
individual organism that are hardly controllable in tight manners. Nevertheless, 
quantitative data outputs will be comparable with respect to trends and magnitudes of 
control of metabolism, even between laboratories or technology platforms used. In 
this respect, any information on biological metadata descriptions will enable 
researcher to (a) carry out own data interpretations and calculations to generate novel 
hypotheses or (b) combine and compare experiments that share similarities on higher 
abstraction levels such as ‘abiotic stress in plant’ which would comprise cold, heat, 
light or nutritional stress. 
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2   Hierarchical Metadata Defining Biological Experimental  
Classes 

We have adopted the general framework laid out by the ArMet group (Architecture 
for Metabolomics) which consists of nine generic modules [2]:  

1. Admin: Informal experiment description and contact details. 
2. BiologicalSource: Genotype and specification of biological source material (BS). 
3. Growth: Environments in which the biological material developed. 
4. Collection: Procedures followed for gathering samples BS material. 
5. SampleHandling: Handling and storage procedures following collection. 
6. SamplePreparation: Protocols sample preparation prior to data acquisition. 
7. AnalysisSpecificSamplePreparation: Protocols specific to data acquisition. 
8. InstrumentalAnalysis: Process description of data acquisition including quality 

control protocols. 
9. MetabolomeEstimate: The output of processed data including data processing 

protocols. 

In the implementation period of ArMet, it was found that the accurate description 
of the biological background of a given sample is the most difficult, but also most 

important part of the framework. 
Many steps of modules 4-9 can be 
easily standardized or described 
since these are technical procedures 
that are always performed in a 
defined manner, at least for a 
specific routine protocol in a given 
laboratory. However, the biology 
experimental part is highly flexible 
and depends solely on the 
hypothesis underlying the study. 
Therefore we decided to use a 
flexible XML data structure, in 
order to match a large variety of 
experimental designs. Given the 
flexibility and breadth of biological 
studies, capturing all biological 
descriptors is technically and 
intellectually demanding, if not 
impossible. It is equally difficult to 
prescribe which of the (potentially 
very complex) steps of the 
biological designs are required from 
the users, and which are just 
optional. Furthermore, a very in-
depth and comprehensive database 
structure implies that users face 
highly complex entry forms (and 
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Fig. 1. Description hierarchy for BioSource. Use 
of controlled vocabularies is ensured for specific 
entries for which authoritative external 
databases have been assigned (such as NCBI). 
Others are cross-checked by dictionaries 
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underlying ontologies) which increases the risk of dummy entries, missing entries or 
to abstention from populating the database. We have therefore opted for a 
compromise: we request users to enter the minimal information that would also be 
required for publishing data in a peer-reviewed scientific journal. In addition we have 
implemented a structured way to capture this metadata reflecting the underlying 
biological design. For example, for some relationships and ontologies there are 
authoritative resources supporting the description of BioSources (BS). Besides species 
names and synonyms, the NCBI database [10](figure 1) supports taxonomic 
relationships, ultimately up to the top levels ‘super kingdom’ (arachae, bacteria, 
eukaryota, viroids and viruses). The underlying taxonomy can be used to distinguish 
unicellular microorganisms and multicellular (higher) organisms: the latter always 
consist of distinct ‘organs’ which may further be specified by tissue type, cell type or 
subcellular compartment that is under study. Microorganisms lack these and can only 
be further specified by potential subcellular compartments. For setup of an 
experiment, users can enter more than one species or more than one organ, each of 
which then may further get specified by additional information. Further authoritative 
databases are added that help specifying subgroups of species. For example, for the 
model plant Arabidopsis thaliana 831 ecotypes are notified in the Arabidopsis 
information resource TAIR [11], and thousands of well-described Arabidopsis mutant 
lines, each with a specific ecotype genetic background. All these genetically different 
Arabidopsis lines are called ‘accessions’ and are assigned by a reference identifier in 
TAIR. As more and more biological communities establish such repositories, these 
are implemented in our experimental setup designs and made mandatory.  

However, even on the level of ‘organs’ there are not many such compulsory lists. 
For plants, a comprehensive list of organs is given by plantontology.org [12], 
however, we have not yet identified an accepted standard for naming all mammalian 
organs, tissues, cell types or eukarytic subcellular compartments: in fact, this is a huge 
gap in ontology work [13] and frameworks describing relationships between 
hierarchical levels in biology. In such cases we gradually extend controlled 
vocabularies by (a) using publicly available lists such as  tissue DB [14] that have not 
yet reached the level of a commonly accepted de facto standard and by (b) extending 
vocabularies used for experimental description in our own database after manual 
curation. All entries, include strings of flow text descriptions are automatically tested 
and corrected for spelling by dictionaries and synonym lists. 

For a given experiment, all these entities together describe the number of different 
biological specimen to be tested. It is important to note that each experimental setup 

necessarily requires description of both BioSource 
and Growth condi- tions. It can be expected that 
metabolic responses on perturbation of growth 
conditions have at least the same magnitude as 
effects that are due to genetic changes. This 
observation is so general that it must be implemented 
as independent and equally important metadata into a 
design structure. The resulting biological setup will 
therefore always span a matrix M = BioSource1…n    *  
Growth1….n. 

 

Fig. 2. A simple experimental 
design BioSource x Growth for 
testing biological hypotheses. 
Each box in the matrices defines a 
class with N ≥6 biological 
replicates as members 

growth history
BS1  N

BS2 N



228 O. Fiehn, G. Wohlgemuth, and M. Scholz 

 

The simplest experimental design that can be devised may compare two different 
BioSources (figure 2), or, alternatively, the same type of BioSources under two 
different Growth conditions. There is no BioSource that has not been grown in a more 
or less defined manner. Therefore, the factor ‘Growth’ is a general property for all 
biological specimens, however, for some organisms like human patients there is no 
detailed experimental design. In such cases, generic terms like ‘western diet, age’ may 
be used apart from potential treatments (see below) like therapies. This design is 
equivalent to the well known matrix ‘Genotype x Environment’ that is used in 
classical crop breeding. It is important to recognize that each of the different 
perturbations (BioSource or Growth) may result in different metabolic states which 
may be separated into groups or classes for statistical analysis of the metabolic levels. 
For any given experiment, parts of the growth conditions are identical to all 
BioSources. Otherwise, any comparison between the classes would be impossible and 
senseless! These past growth conditions may be described as a growth history G1. For 
each species, a minimum set of growth metadata is required whereas other metadata 
are optional. In plant molecular biology, a single growth history may be defined for 
which details would be required on sowing and harvest date, harvest time, daylight 
period, light intensity, humidity, developmental stage, growth medium and type of 
growth location. Unfortunately, there is no consensus or ontology for this minimum 
set of ‘background Growth metadata’. For a given biological field, experimental 
descriptors may have been passed on as ‘necessary’ by journal editors, reviewers and 
university courses. For example, it is most common to give details on light fluxes in 
plant biology when explaining the experimental setup in environmental growth 
chambers. However, it is far less common to say which actual light source was used 
and the emission spectrum of this, although it is known that plants do react very 
sensitively on higher or lower levels of red and blue parts of the light spectrum.  

In the same way like molecular biologists will vary the genotype (or organ or cell 
type of a given genotype), physiologists and toxicologists will study variations of 
Growth conditions (including developmental stages) and external environmental 
impacts such as drugs (‘treatments’). Each of these growth conditions may again split 
into different attributes and properties. An example would be ‘variation of 
temperature’ in a cold stress experiment in plant physiology, which might utilize high, 
low, and control temperatures, extending the matrix of BS1 and BS2 (each with three 
organs) 6 x 3 = 18 biological groups or classes. It is important to note here that the 
generation of these classes as derived conceptual information from the biology 
metadata is fed into various other locations within the mass spectral annotation 
system, most importantly into the data acquisition schedule, the metabolite 
verification algorithm (see section 3.1) and the statistics workflow. It can easily be 
imagined that this treatment might be followed in a time dependent manner, which 
would further increase the matrix (and the complexity of the experimental design). If 
four time points were included, the overall sample matrix would then be of a 
dimension of 6 x 3 4 = 72 different biological classes. In order to perform statistical 
tests on the resulting metabolomic data, it is wise to use more than six samples per 
biological class, say 10 independent plants. Consequently, 720 samples would be 
delivered for metabolite analysis: an undertaking that can indeed be carried out in a 
reasonable time frame and budget in metabolomics, but which would be less feasible 
for more costly and slower transcriptomic or proteomic experiments (i.e. in case 
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global gene or protein expression levels were to be analyzed). In this respect, 
metabolomics is different to other –omics techniques because very detailed and 
structured experimental designs are more likely to be performed with sufficient 
replicate numbers to carry out statistical tests on the resulting experimental data. In 
principle, a hierarchical tree of ‘Growth’ may be drawn (figure 3).  
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Fig. 3. Flowchart for the description of ‘Growth’. Very complicated experimental designs may 
be performed, based on the physiological tests that biologists devise. Further specifications 
(spec) may be entered but are not required 
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Fig. 4. Pharmacological comparison of two rat strains, four organs, and treatment with two 
drugs with two different doses which is followed at four time points 

This Growth design hierarchy is obviously dependent on the underlying metadata 
from BioSource: it does not make sense to require ‘light conditions’ from a human 
blood plasma study, and it also is not reasonable to request ‘gender’ from a plant. 
However, for a given BioSource there is set of growth metadata that is always 
requested (such as age, sex and other parameters for human samples). The usability of 
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this flowchart for a variety of areas of biological research is exemplified by a 
pharmacological test setup. The flexible BioSource x Growth matrix allows an easy 
setup of this experiment which may consist of only two rat strains (control and mutant 
line), on which the effects of two drugs in two different doses is tested on four time 
points in the blood plasma, and (at end time point 4), also for liver, heart and kidney. 
Such a pharmacology design is depicted in figure 4. It is important to note that each 
individual biologist who defines an experiment also defines which metadata are 
mandatory: in this respect, this metadata layout does not prescribe the biologist what 
to do but helps scientists to describe the underlying idea behind the design. For both 
BioSource and Growth, users may want to add further specific attributes to tables. 
These cannot be restricted by ontology databases or dictionary comparisons. An 
example could be ‘patient ID codes’ for clinical samples.  

2.1   Technical Implementation of SetupX 

We call our system ‘SetupX’ which sets up experimental design classes and 
subsequently also manages laboratory workflows and user queries. Although 
developed for a certain purpose, SetupX’ architecture allows the system to be used in 
other environments after small adaptations and configurations. A modular structure of 
this system guarantees that it is reusable, easy to maintain and expandable [15]. All 
separate functions are offered and used by SetupX in different smaller modules. 
Communication and interaction between these modules is interceded by the mediator 
layer. Therefore, different modules can be placed into other environments in short 
time without requiring major modifications.  

Currently there are two access possibilities implemented that allow use of six core 
modules of SetupX. Any external access to the core modules is shielded by the 
mediator. One way of external access is the web service module which is based on 
SOAP (Simple Object Access Protocol) and which allows a platform independent 
administration and use via XML communication. The database is a native XML 
database that supports storage of metadata in true XML and that also supports the 
query language XQuery. Native XML databases support data that are not underlying a 
fixed schema, which is difficult or almost impossible using relational databases.  

A swing-user-interface is connected to the web service module for system 
administration. The second type of external access is the JSP/Servlet module, which 
generates the standard user-interface for external collaborators and laboratory staff. 
Part of this user interface is the dynamically generated form for defining biological 
experiments and classes. The six core functions of SetupX include user 
communication and management, interaction with BinBase, generating and writing 
schedules for the mass spectrometer (based on class information), and eventually the 
definition of the laboratory workflow itself (figure 5).  

1. User communication and management 
Information stored in BinBase and SetupX must be regarded as confidential. This 
policy is enforced by defining user authorisations for the different roles. UC Davis 
users will use their account granted by the campus’ Kerberos system. With this 
account, additional personalized information (e.g. affiliation, address, email, 
telephone etc) is referenced by SetupX through LDAP-directories (Lightweight 
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Directory Access Protocol). For non-campus 
users, SetupX needs to generate an internal 
authentication. Users need here state once 
their personal information. Users, and 
particularly metabolomics staff members, 
can check the status of laboratory workflows 
directly by logging in, or are notified by 
email when predefined workflow parts have 
been finished or when problems occurred.  

2. Interaction with BinBase 
Users can request BinBase annotation result 
files through SetupX which activates the 
BinBase export function by EJB (Enterprise 
Java Beans) and JMS (Java Messaging 
Service, a Java interface to Message-
Oriented Middleware). BinBase itself 
requests information about class labels of 
samples using EJBs. 

3. Generating and writing schedules for the mass spectrometer 
Through the user interfaces, classes and the number N of samples per class are 
entered. SetupX uses this information to generate a run sequence schedule for the 
mass spectrometer and to communicate this schedule to the instrument in an 
instrument-specific format. Once the sequence has been started by laboratory staff, an 
internal scanner is used to grab any information delivered by the mass spectrometer 
with regards to success or potential failure messages. This information is then fed 
back into SetupX using the same instrument-specific connector.  

4. Workflow definition and surveillance 
A workflow manager defines the execution sequence of the different modules in order 
to allow flexible adaptations to new laboratory requirements. In order to make the 
system independent from the current laboratory workflow definition, a workflow is 
compiled in a single configuration file. This allows easy update of workflows in case 
of changes of laboratory protocols or data processing modifications. 

5. Persistence and document module 
SetupX stores all documents such as experiment description, sample definition etc. as 
XML files. Consequentially a genuine XML database is used as repository for which 
XQuery [16] serves as powerful query language. We found XML structure an 
adequate choice given the fact that the definition of biological classes does not allow 
a unique structure. XML is known as a simple, very flexible text format, which allows 
the definition of the hierarchy used for the definition of the experiment in an excellent 
way. Storing this information in a relational database management system would be 
inappropriate because a large overhead would be generated for mapping this 
information from XML to the relational structure and back. Speed is not an important 
aspect for SetupX because no large computational queries are foreseen. Furthermore 

Fig. 5. Modular structure of SetupX and 
its connected components 
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both the input and export format is XML. Since the database stores the information as 
unmodified XML the data has never to be mapped.  

6. Graphical user interface 
One of the main requirements of the new developed LIMS system was that it had to 
be so user friendly that every user had to be able to use it without any introduction by 
the staff of the lab and even without reading manuals. The major request was 
technical – the user interface had to build and generate itself dynamically, because the 
structure which is represented by the graphical user interface will never, as mentioned 
above, be fixed to a final set of attributes. We have first explored using a Swing User 
Interface, similar to the PEDRo-approach. The experimental class structure was 
defined through an XML schema, and based on this schema the Client-Application 
created the graphical user interface. However, this schema driven client never 
matched the requirements of user friendliness and usability, because any fine tuning 
of class definitions and sample specifications were constrained by the technical 
limitations of the underlying XML schema. Instead we have implemented a server 
side dynamical created user interface based on Java Server Pages and Java Servlets. 
This solution is more independent from the experimental design than XML schema. It 
is therefore possible to add any functionality to this interface that can be implemented 
in code including functions like real time vocabulary checks or even the adoptions of 
the user interface to the selected items. 

2.2   Experimental Metadata Supporting Other ArMet Modules 

Some ArMet modules demand information that is usually stored in classic LIMS 
implementations such as user logins and user rights. For our case, slight adaptations 
were needed because many biological experiments are owned by more than one user: 
it is mandatory in our LIMS implementation to name the principal investigator 

(usually a faculty 
member), but also in 
addition to name the 
person who was 
responsible for performing 
the experiment (who may 
be research associate or 
staff). Other modules may 
be dependent on a given 
laboratory setup or a given 
BioSource: protocols to 
prepare samples from 
plants for metabolomic 
surveys may be totally 
inadequate for profiling of 
human blood plasma.  

In order to ensure and 
monitor long term data 
quality and reusability, it 
is good laboratory practice 
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Fig. 6. Schematic flow diagram of Standard Operating 
Procedures (SOPs) in an example for an experiment with 
BioSource: human blood plasma samples 



Setup and Annotation of Metabolomic Experiments 233 

 

to perform any work by so-called ‘Standard Operating Procedures’ (SOPs), both in 
industrial and semi-industrial analytical environments such as academic core 
laboratories. Such SOPs include all characteristics needed for direct implementation 
of sources of metadata into the BinBase system: they include authoritative codes, 
identifier numbers, clear descriptions of necessary steps and also allowed deviations 
from protocols. An SOP differs from an academic laboratory protocol in that it must 
clearly lay out all aspects of a procedure. If a single item of the procedure is changed, 
it is necessary to state the reason for change, acquire data proving the validity of the 
change, reinstate permission by the laboratory authority (e.g. the principal 
investigator) and generate a new SOP number.  

Once an SOP is laid out for e.g. sample preparation of a given BioSource or data 
acquisition procedure, it can be made mandatory in a LIMS workflow structure 
(figure 6). The validity area of SOPs is always clearly defined, but there may be 
features in the details of SOPs that are shared with external SOPs like the generalized 
type of the instrument (example in figure 6: a gas chromatography coupled to mass 
spectrometry) or the type of sample preparation (example in figure 6: cold protein 
precipitation, silylation). Such higher levels of metadata descriptions yet need to be 
developed and cannot be made mandatory at present. For example, it is an experience 
that some analytical instruments are affected by mid-term technical drifts (e.g. in 
sensititvity). Often, the factors underlying these technical drifts are not well 
understood and can only be partly controlled. The bottom line of metabolomic 
experiments is to derive structured information from the acquired data (e.g. by 
multivariate statistics) and to interpret resulting data clusters by biological metadata. 
It is obviously of utmost importance that this metabolomic data structure is not 
affected by non-biological factors such as machine drift. A means to ensure this (apart 
from instrument quality control) is a randomization of all samples in a sequence, so 
that each class is, on average, affected in the same magnitude as all other classes. The 
easiest way to ensure this is by a random number generator, however, in the 
laboratory this is almost impossible to put into practice. Therefore, SOP 007_2005a 
envisions a square root blocking schedule of all replicate samples of each class as 
compromise between total randomization and laboratory practicability:  

nblock = √Nclass        (1) 

If a class contains a total N=6 biological replicates, these would be randomized in 
three blocks of n=2 duplicates over the total instrument run sequence; if a class 
contains 16 biological replicates, these would be blocked into four blocks of four 
replicates. In summary, the SetupX module generates classes via biological metadata 
and enforces with this information a certain run sequence in the analytical laboratory.  

3   Mass Spectral Annotation and Quantitation: BinBase 2.0 

All samples are subjected to metabolome data acquisition by automatic liner exchange 
for gas chromatography/time of flight mass spectrometry (alex-GCTOF). The general 
output of this instrument is a three dimensional raw data matrix of (time x mass x 
intensity), which results in 10.8 mio. raw data points for a single sample (415 
masses/spectrum x 1300 s x 20 mass spectra/s). 
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However, biological researchers can only interpret such data matrices if these are 
transformed into two dimensional data matrices (metabolite x intensity), since 
metabolite references are found in chemical or biochemical databases like CAS and 
KEGG and can thus be linked to other important biological objects like proteins and 
genes. The objective here is therefore to turn (time x mass) information into 
‘metabolite’ annotations in a routine, but completely unbiased way, and to enable 
queries in experimental sets of such data matrices.  
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Fig. 7. Deconvolution of raw metabolomic data. Left panel: Overlay of 4 out of 415 measured 
mass elution profiles (10 s of a total run time 1350 s, profiles for ions m/z 129, 131, 133, 204). 
Mid panel: Deconvoluted mass spectra of two adjacent, co-eluting peaks with ∆time = 1.35 s. 
Right panel: instrumental metadata labelling these two peaks. Mass spectra and metadata serve 
as raw data input in Binbase 2.0 

It is beyond the scope of this paper to outline theory and concepts of analytical 
mass spectrometry. It is important to know, though, that in the instrument each 
metabolite will fragment into more than one mass which will be detected in a finite 
time frame with an approximately Gaussian intensity time course and identical mass 
intensity ratios across this ‘elution’ time course. This time course is called a ‘peak’ 
with a unique mass/intensity pattern (called ‘mass spectrum’). The peak intensity 
maxima define the first kind of instrumental metadata, called ‘retention time’ (fig. 7). 
It is unavoidable in metabolomics that peaks overlap (co-elute) since a metabolome of 
a given sample easily comprises over 1,000 different metabolites. Many mass 
fragments may be shared between co-eluting peaks. Therefore, the first step of the 
algorithm is to deconvolute [17] or purify mass spectra from co-eluting peaks, with 
appropriately assigning the intensity of shared masses to each peak. For this 
deconvolution we utilize the instrument vendor’s software ChromaTOF 2.25. This 
software detects peaks in an unbiased way and exports one deconvoluted spectrum 
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per peak. In subsequent sections ‘peaks’ and ‘spectra’ are therefore used as 
synonyms. After deconvolution, a chromatogram comprises some 400-800 spectra, or 
a daily output of some 20,000 spectra per day and instrument. BinBase 2.0 then 
imports these spectra with accompanying metadata such as the ‘unique (model) 
masses’ that best describe the presence of a peak in the local environment. Further 
instrumental metadata are ‘peak purity’ (an estimate of the number, proximity and 
similarity of co-eluting peaks), ‘signal/noise’ (an estimate of peak abundance), 
‘apexing masses’ (all masses that share maximum intensity with the peak maximum 
of the unique mass) and other.  

3.1   The Filtering Algorithms in BinBase 2.0 

Each sample will generate a different number of deconvoluted metadata-labelled 
spectra. Unfortunately, metabolomic mass spectrometry data sets contain numerous 
spurious and noisy spectra which need to be detected and deleted prior to annotating 
and aligning the remaining spectra, and this needs to be performed for multiple 
samples (n>1,000) and eventually, multiple of such large experiments. In addition, 
there may be deconvolution errors reported by ChromaTOF which need to be detected 
and eliminated. We therefore set out to develop a filtering algorithm that enables 
metabolite detection and quantification concurrently with automatic extension of 
metabolic libraries.  

The objective of BinBase 2.0 therefore is to three-fold: (a) to annotate all exported 
spectra to known metabolic peaks that are already compiled as BINs in the database, 
(b) to automatically add new spectra to the list of BINs and (c) to allow dynamic user 
queries to export quantitative and qualitative metabolomic information after spectra of 
all classes have been annotated. A BIN is defined as a valid entry in the BinBase that 
has matched all mass spectral, instrumental and class metadata thresholds. In addition 
to the instrumental metadata, each BIN consists of a set of properties: mass spectrum, 
retention index (RI), quantification mass, list of unique masses, and a unique 
identifier number. BINs can be further qualified by super users with 1…n properties 
that link further metadata such as ‘metabolite name’, ‘ID code referring to external 
metabolic databases’, ‘list of synonyms’ or else.  

The general algorithm from spectra import to user query export is depicted in 
figure 8. It starts with importing and storing the .csv data files from all samples of an 
experiment. The algorithm proceeds by validating all spectra of a sample: check for 
presence and relative abundance of the unique ion, for presence of all apexing masses 
in spectrum, for deconvolution error dips, and for the number of spectra per 
chromatogram that exceed apex intensity thresholds and for the total number of thus 
detected deconvolution errors. Chromatograms that do not fulfil the latter two criteria 
will only be used for peak matching, but not for BIN generation. The algorithms then 
searches spectra of marker compounds that were physically spiked into the samples 
before data were acquired by using parametrized identification thresholds. With these 
marker compounds, retention indices (RI) are calculated from retention times to allow 
retention alignment. This is needed to counteract sample-to-sample retention shifts in 
the data acquisition procedure. The RI calculation is performed by polynomial 
regression because absolute and relative retention time shifts markedly differ from 
linear regressions at early and at late retention times. RIs are never altered or 
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manually adapted for a given data acquisition method, however, they will differ if 
chromatographic methods are changed. The algorithm then continues by sequentially 
(seq.) selecting all spectra by decreasing intensity (s/n) and testing, whether spectra 
can be annotated as existing BINs or, if they fail this annotation, if spectra could 
become new BINs. These decisions work through various filters: first, spectra need to 
fit into a retention index window, then they need to be labelled with a unique mass 
that is included in the BIN list of unique masses, afterwards they need to pass a mass 
spectral similarity filter (sim) that has different thresholds based on the intensity (s/n) 
and purity of the spectra, and last, spectra need to pass the isomer filter (iso) that 
selects the best of potentially several matching spectra for a given BIN. The similarity 
filter currently uses the INCOS algorithm [18], but in principle also other rules could 
be applied. Spectra that are sorted out in the isomer filter might still be able to match 
other (neighbouring) BINs and are therefore fed back into the annotation algorithm. 
Spectra that fail annotation to any existent BIN may generate new BINs. For this, they 

first need to pass mass spectral quality 
thresholds (MS) that are based on purity and 
intensity. Thresholds for the MS filter are 
more draconic than for the similarity filter to 
ensure that only abundant and pure spectra 
potentially become new BINs.  

Ultimately, a potential new BIN must pass 
the class filter before being validated. This 
filter demands that a new BIN is detected in 
at least 80% of all samples of a class in order 
to ensure that this BIN can be supposed to be 
a genuine metabolic entity and not a spurious 
contamination. This is also the basic reason 
why at least N=6 replicates of a given class 
need to be analysed, in order to ensure some 
level of statistical significance. Once all 
spectra of all classes of a given biological 
experiment have been annotated, the list of 
BINs is complete. Then, all spectra are again 
matched against the BIN list (postmatching) 
in order to warrant that all BINs (including 
the new BINs that were generated later in the 
process) are searched in all samples. Another 
reason for the postmatching process is that 
for some samples, spectra may not have 
passed the (higher) MS thresholds in the BIN 
generation but would pass the (lower) 
similarity thresholds in BIN annotation. 
Therefore, only by final postmatching the 
eventual result file can be regarded as 
complete. During the export process, each 
spectrum is quantified based on intensity of 
the BIN quantifier mass which is either 

Fig. 8. Algorithm for peak annotation 
and BIN generation. For details, see 
text 
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manually set by a super user or (as default value) it uses the ‘unique mass’ metadata 
during BIN generation. Various formats can be used for the final data export, 
depending on the user’s needs. To our notion this is the first published attempt to 
align and annotate (biological) mass spectra by both instrument-related and biological 
metadata. 

3.2   Technical Implementation of BinBase 2.0 

Spectra filtering and BIN databasing is performed in separated modules: it is not 
advisable to calculate values within a database but use DBs exclusively for queries 
and data handling. We have employed an SQL 97 conforming database for an 
efficient data administration and query. The newer SQL 2003 specification was not 
yet supported by all open source databases. In order to be independent from a specific 
(supported) database type such as Oracle or SAPDB we have used Java database 
connectivity (JDBC). It was carefully avoided to program any functions that would be 
specific to a certain DB type.  

BinBase 2.0 predominately consists of 1…n table relationships. It is interesting to 
note that we have implemented the two modules, BinBase and SetupX, in two 
different database structures: for BinBase 2.0, an SQL structure was found to be 
advantageous due the faster access that is achieved by relational databases with fixed 
structure, compared to the more flexible but slower XML structure which was used 
for the (flexible) SetupX system. Furthermore are SQL based systems more mature, 
offering a wide variety of public or commercial products. For example it is 
unproblematic to use either Oracle or SAPdb because only minimal adaptations of 
SQL queries are needed (if programming was done conforming to standards, and if 
vendor-specific extensions were not used). The largest problems we have encountered 
were found in storing of all mass spectra. Spectra are imported into BinBase as strings 
which we first approached to be separated and stored in tables. However, we detected 
that query times exponentially slowed down with increasing numbers of rows. 
Therefore spectra are now stored as ‘character large objects’ (CLOB) which are 
dynamically transformed when needed. This procedure has also slowed down 
performance rates, however, it was found to be still faster than querying tables. The 
BinBase database itself is configured via XML files, which was found to be a simpler 
and more flexible solution compared to INI files. Furthermore this configuration 
offered the possibility to dynamically upload new implementations of the used 
interfaces via Class.forName(). 

Other components such as SetupX or web interfaces are linked via EJB (Enterprise 
Java Beans) and JMX (Java Management Extensions). The JMX components enable 
starting, stopping or querying the status of implemented servers. The EJBs allow 
querying which samples are being processed or exported during longer sequences. 
XDoclet was used for generating EJB/JMX configuration files and helper classes. 
Three servers are implemented: an import server (for importing, matching and BIN 
generation), a postmatching server (for regular postmatching over the complete 
database) and a transformation server (for exporting data and file formatting). 
Currently, plain text, MS Excel and XML is supported. These servers can run 
independently or together with the EJBs on the JBoss application server.  
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Finally, front ends have been implemented. A plugin based on Eclipse 3/SWT is 
used as administrative front end. It includes visualization based on JFreeChart and 
allows database queries via a Hibernate framework. The Hibernate framework 
supports mapping database documents to objects. Dynamic SWT-tables and 
visualizations are created from these objects via Java Reflection-API. Therefore, these 
tables visualize the database contents, for example, all BINs with corresponding 
metadata. BINs can be modified or manually erased by super users only. A 
persistence layer is used for user access and user defined queries.  

4   Conclusions  

This is the first description of a combined system which uses the description of 
biological experiments to validate metabolic peaks from mass spectra and 
corresponding mass spectral metadata. Earlier publications have not detailed 
algorithms how (processed) mass spectrometric peaks are automatically validated and 
added to a database, but rather focused on database query options [19] or on 
comparing chromatograms on the base of summing mass spectral intensities [20, 21], 
instead of alignments of deconvoluted mass spectra and annotation of individual 
metabolites. The implementation of BinBase 2.0 enables annotating up to 0.5 mio. 
spectra per day which is far higher than the current production rate of 20,000 
spectra/day at the UC Davis Genome Center metabolomics facility. A comparison of 
manual and automatic validation of such chromatograms will be presented in a 
bioanalytical journal for the comparison of 1,200 potato tubers from a field trial. 

Further improvements will work on parallelization of processes for peak 
detection and postmatching and on integration of further peak metadata (such as peak 
tailing factor or profile purity) for automatic flagging of problem cases. SetupX 
development will consist of further integration of ontologies with a focus on 
improvements in user friendliness and reducing the time needed for defining each 
experiment. Ideally, SetupX would parse the required biological metadata directly 
from strings that are pasted by users into a single web form, and would only ask for 
additional information if needed. To this end, however, the abilities of text mining 
approaches have not been developed far enough yet. 
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