

1

Generation of in-silico MS/MS mass spectra using combinatorial algorithms and reaction prediction expert systems

239th ACS National Meeting 2010 San Francisco, CA

CINF: Division of Chemical Information Metabolomics: A Field at the Boundaries between Chemistry and Biology

Tobias Kind, Kwang-Hyeon Liu, Do Yup Lee, Oliver Fiehn FiehnLab – Metabolomics UC Davis Genome Center, Davis, USA

Outline

- 1) History and motivation (NIH glue grant of 70 Mio. Dollars)
- 2) Molecule creation using combinatorial algorithms
- 3) Modeling of in-silico MS/MS spectra
- 4) Outlook and Conclusions

Tandem mass spectrometry

MS/MS mass spectral library search

In-silico mass spectra:

- m/z fragments and abundance calculation required
- statistical (computer derived) and heuristic rules (experience of a human expert)

Idea: Consistent lipid fragmentation (CID 35 V)

Phosphatidylcholine - PC (16:0/16:1) or short PC 32:1 [M+H]⁺ MS/MS precursor m/z = 732.55

m/z

Existing in-silico approaches for tandem mass spectrometry modeling

- 1) Peptides (Proteomics) o.k.
- 2) Oligosaccharides (Glycomics) o.k.
- 3) Not for small molecules or not validated on larger sample sets (*)

In-silico spectra only "easy" to generate when consisting and repeating building blocks exist. For example **amino acids** in peptides or **sugar building blocks** in oligosaccharides.

(*) Matching Structures to Mass Spectra Using Fragmentation Patterns: Are the Results As Good As They Look? Schymanski et al. *Anal. Chem.*, 2009, 81 (9), pp 3608–3617

Number of publications about tandem mass spectrometry (MS/MS)

A total of 29,027 MS/MS publications exist (22,991 excluding peptides)

What went historically wrong?

Challange: Name that graph! (*)

(*) Internet meme from Chemical blogspace <u>http://cb.openmolecules.net/</u> Promise: You're not gonna get rickrolled.

What went historically wrong?

The largest commercial MS/MS database (NIST08) contains **14,802 MS/MS** spectra of 2857 unique compounds *(85 lipids)*

The largest public source (Massbank) contains **8,337 MS/MS** spectra of 2572 unique compounds

8 Million commercial unique chemicals available (eMolecules) 50 million molecules in CSLS DB

What went historically wrong?

- A) Scientists (we) do not publish machine readable MS/MS spectra
- B) Scientists (we) publish MS/MS as bitmap picture in PDF
- C) Scientists (we) do not share spectra (Open Access, commercially)
- D) There are no easy to use technologies in place to enable data sharing

Do we need to push OCR technology?

Enable electronic data (MS spectra) sharing!

Data reduction and loss remove noise and uninteresting data Extreme data loss OCR and text mining conversion errors

Hamburger to Cow algorithm or "Wishful Thinking" Requires Jurassic Park Technology

Kind T, Scholz M, Fiehn O How Large Is the Metabolome? A Critical Analysis of Data Exchange Practices in Chemistry. PLoS ONE 4(5): e5440. (2009); doi:10.1371/journal.pone.0005440

Eureka! Create in-silico MS/MS spectra

Combinatorial library algorithms for structure generation

- 1) LipidMaps Tools (Perl) based on open source MayaChemTools by Manish Sud
- 2) SMILIB (JAVA) open source Modlab Uni Frankfurt Schüller/Hähnke/Schneider
- **3)** Reactor (JAVA) virtual reaction processing tool by ChemAxon

A) Instant-JChem database (ChemAxon)

for structural handling

B) MassFrontier (HighChem/Thermo) for mass spectrometry based reactions and fragmentations

Combinatorial scaffold library design

- + LipidMaps nomenclature name generation
- + accurate isotopic fragment calculation
- + mass spectral peak annotation
- + heuristic peak abundance modeling (CID voltage dependent)
- + conversion into mass spectral library format

Instant JChem structure handling

MS/MS search with NIST MS search program using precursor search and dot-product match

🕰 NIST MS Search 2.0 - [Peptide, Presearch Default - 42 spectra]				
Eile Search View Tools Options Window Help				
🚳 🎾 🛱 📮 1. 732.555 [Da].dta				
# Src. Name 32 A 758.571 [Da].dta 33 A 759.573 [Da].dta 34 A 760.586 [Da].dta 35 A 762.599 [Da].dta 36 A 768.555 [Da].dta 37 A 768.555 [Da].dta 4 • • • •	38=732.554687 672.382010 714.5033631 270.37082386 337.2953131 364.1086965 ✓			
100- 100- 100- 100- 476 496 50- 426 460 510 527 549 585 613 631 658 686 0- 426 460 0- 426 460 0-	713			
# Li Score Dot Pro Prob E-Om Name 50- 476 494 549 in-silico MS/MS 1 pc 855 25.0 0 PC 32:1; [M+H]+; GPCho(1) 476 494 549 in-silico MS/MS	715			
2 pc 855 25.0 0 PC 32.1; [M+H]+; GPCho(1) 100 673 3 pc 855 855 25.0 0 PC 32.1; [M+H]+; GPCho(1) 673 673 4 pc 855 855 25.0 0 PC 32.1; [M+H]+; GPCho(1) 440 460 500 520 540 580 600 620 640 660 680	700 720 740			
5 pc 106 106 0.00 0 PC 32:1; [M+H]+; GPCho(2: 6 pc 106 106 0.00 0 PC 32:1; [M+H]+; GPCho(2: 732.555 [Da].dta Head to Tail MF=438 RMF=901 ▼PC 32:1; [M+H] Difference → Head to Tail ∧ Side by Side ∧ Subtraction /]+; GPCho(16:1(9) 855 855R 25.0P			
Name: PC 32:1; (M+H)+; GPCho(1) 8 pc 75 0.00 0 PC 32:1; (M+H)+; GPCho(1) 9 pc 69 Library hit scores C 32:1; (M+H)+; GPCho(2) 100- 673.48083 10 pc 69 C 32:1; (M+H)+; GPCho(2) C 32:1; (M+H)+; GPCho(2) C 32:1; (M+H)+; GPCho(6) 100- 673.48083 7m/2 Values and Intensities:	o(16:1(9Z)/16:0) -h -H2O			
11 pc 61 61 0.00 PC 32:1; [M+H]+; GPCho(1) 476.31425 476.3289 600.00 [M+H]-sn1 12 pc 61 61 0.00 PC 32:1; [M+H]+; GPCho(1) 50- 549.48829 478.3289 600.00 [M+H]-sn1 13 pc 54 54 0.00 PC 32:1; [M+H]+; GPCho(1) 549.48829 496.34045 600.00 [M+H]-sn1 14 pc 54 54 0.00 PC 32:1; [M+H]+; GPCho(1) 549.48829 496.34045 600.00 [M+H]-sn1	-H2O			
15 pc 49 49 0.00 0 PC 32:1; [M+H]+; GPCho(2) 16 pc 49 49 0.00 0 PC 32:1; [M+H]+; GPCho(2) ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	H9N (-59) D (-18)			
Names Structures Hit List Plot/Text of Hit Plot of Hit				
Lib. Search Other Search Names Compare Librarian in-silico MS/MS				

Search speed ~ 100 MS/MS spectra per second (without GUI)

Library size and coverage of lipid classes

				Number MS/MS spectra	Number
Number	LipidClass	Short	Number compounds	with different adducts	MS/MS LIBS
1	Phosphatidylcholines	PC	5476	10952	2
2	Lysophosphatidylcholines	lysoPC	80	160	2
3	Plasmenylphosphatidylcholines	plasmenyl-PC	222	444	2
4	Phosphatidylethanolamines	PE	5476	16428	3
5	Lysophosphatidylethanolamines	lysoPE	80	240	3
6	Plasmenylphosphatidylethanolamines	plasmenyl-PE	222	666	3
7	Phosphatidylserines	PS	5123	15369	3
8	Sphingomyelines	SM	168	336	2
9	Phosphatidic acids	PA	5476	16428	3
10	Phosphatidylinositols	PI	5476	5476	1
11	Phosphatidylglycerols	PG	5476	5476	1
12	Cardiolipins	CL	25426	50852	2
13	Ceramide-1-phosphates	CerP	168	336	2
14	Diacylglycerols	DAG	1764	1764	1
15	Triacylglycerols	TAG	2640	5280	2
16	Monogalactosyldiacylglycerols	MGDG	5476	21904	4
17	Digalactosyldiacylglycerols	DGDG	5476	10952	2
18	Sulfoquinovosyldiacylglycerols	SQDG	5476	5476	1
19	Diphosphorylated hexaacyl Lipid A	LipidA-PP	15625	15625	1
Total	All libraries		95326	184164	40

Covered adduct libraries

[M+H]+ [M+Na]+ [M+NH4]+ [M-H]-[M-2H](2-) [M+NH4-CO]+ [M+Na2-H]+ [M]+ [M-H+Na]+

Example: ion trap mass spectrometer

Fatty acyl side chains (sn1, sn2) best detected in negative ionization mode

Example: Electrospray-ion trap mass spectrometer

Bruker Esquire Ion Trap

1st Hit

MGDG(20:5/18:4) (4 candidates in database) (512 double bond isomers)

 Name:
 MGDG 38:9;
 [M-H]-;
 MGDG(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z))

 MW:
 795
 ID#:
 75218
 IDE:
 lipidblast-neg

 Comment:
 Parent=795.50478
 MGDG 38:9;
 [M-H]-;

 MGDG(18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z));
 C47H72O10
 2

 2 largest peaks:
 301.21662
 999.00 |
 275.20098
 999.00 |

 2 m/z Values and Intensities:
 301.21662
 999.00
 sn2 FA

 301.21662
 999.00
 sn1 FA

Source: Chimica e biologia a confronto: pigmenti e altri metaboliti secondari prodotti da dinoflagellati del Lago di Tovel; Studi Trent. Sci. Nat., Acta Biol., 81 (2004), Suppl. 2: 413-426;Rita FRASSANITO, Ines MANCINI & Graziano GUELLA

Example: Hybrid Ion-Trap (IT) and Time-of-Flight (TOF)

537.267

Experimental

100.00

999.00

100-

50-

50

255.009

255.23226

225.00690

SQDG 34:3 (8 candidates)

Library 100 250 300 350 400 450 500 550 600 650 700 750 800 Name: SQDG 34:3; [M-H]-; SQDG(16:0/18:3(6Z,9Z,12Z)) MW: 815 ID#: 106150 DB: lipidblast-neg Comment: Parent=815.49792 Mz exact=815.49792 ; SQDG 34:3; [M-H]-; SQDG(16:0/18:3(6Z,9Z,12Z)); C43H76O12S 559.25784 300.00 [M-H]-sn1 537.27348 300.00 [M-H]-sn2 277.21662 100.00 sn2 FA

sn1 FA

fragment C6H9O7S

Source: A Chloroplastic UDP-Glucose Pyrophosphorylase from Arabidopsis Is the Committed Enzyme for the First Step of Sulfolipid Biosynthesis Y Okazaki, M Shimojima, Y Sawada et al. The Plant Cell 21:892-909 (2009);

Example: ion trap mass spectrometer

<u>Name:</u> LipidA PP [14/14/14/14/3O-(12)/3O-(14)]; [M-H]-; <u>MW:</u> 1796 <u>ID#:</u> 64304 <u>DB:</u> lipidblast-neg <u>Comment:</u> Parent=1796.21157 Mz_exact=1796.21157 ; LipidA PP [14/14/14/14/3O-(12)/3O-(14)]; [M-H]-; C94H178N2O25P2; LipidA-PP-[R2(14:0)(3-OH)/R3(14:0)(3-OH)/R2'(14:0)/R3'(14:0)/R2'-3-O-(12:0)/R3'-3O-(14:0)] <u>9 largest peaks:</u>

1552.00785	999.00	1698.23467	600.00
1796.21157	500.00	1498.05715	300.00
1470.02587	300.00		
1596.03405	250.00	1568.00277	250.00
1454.03095	250.00	1714.22959	50.00

9 m/z Values and Intensities:

1796.21157	500.00	[M-H]-
1714.22959	50.00	[M-H]-PO3H
1698.23467	600.00	[M-H]-PO4H3
1596.03405	250.00	[M-H]-PO4H3-R2'-O-FA
1568.00277	250.00	[M-H]-PO4H3-R3'-O-FA
1552.00785	999.00	[M-H]-R2 acyl FA [M-H]-R3 acyl FA
1498.05715	300.00	[M-H]-PO4H3-R2'-O-FA
1470.02587	300.00	[M-H]-PO4H3-R3'-O-FA
1454.03095	250.00	[M-H]-R2-PO4H3 [M-H]-R3-PO4H3

Thermo Finnigan LCQ/LTQ

Lipid A (PP) (16 candidates)

Structural analysis of lipid A from Escherichia coli O157:H7:K- using thin-layer chromatography and ion-trap mass spectrometry; Chang-Soo Lee, Yun-Gon Kim, Hwang-Soo Joo, Byung-Gee Kim; J Mass Spectrom. 2004 May;39(5):514-25.

Example: hybrid quadrupole ion mobility spectrometry time-of-flight

Name: PC 32:0; [M+Na]+; GPCho(16:0/16:0) MW: 756 ID#: 42167 DB: lipidblast-pos Comment: Parent=756.55190 Mz exact=756.55190 ; PC 32:0; [M+Na]+; GPCho(16:0/16:0); C40H80NO8P

5	m/z	Values	and	Intensities:

697.47840	999.00	[M+Na]-C3H9N (-59)
573.48586	600.00	[M+Na]-C5H14NO4P (-183)
518.32238	20.00	[M+Na]-sn1 [M+Na]-sn2
500.31182	20.00	[M+Na]-sn1-H2O [M+Na]-sn2-H2O
441.23832	40.00	[M+Na]-59-sn1 [M+Na]-59-sn2

Source: Waters.com

Waters HDMS Synapt

Library curation costs money

WILLY REGISTER The factors of WILLY Resolutions And Second Andrews Management Andrews Man	Wiley Registry of Mass Spectral Data, With Nist 2008 Ensure your lab has the most comprehensive library. Wiley combined the two 2008 library, including a new release of NIST MS Search software with AMDIS Add to Shopping List	\$11,143.83 new Alibris _
WILLY POSSTER' Product TETER And Investigation	Wiley Registry of Mass Spectral Data, 8th Edition Ensure your lab has the most comprehensive library. Wiley combined the two 2008 library, including a new release of NIST MS Search software with AMDIS Add to Shopping List	\$10,726.69 new Alibris _
WELF PROSTER MELEVANIE MELEVANIE MELEVANIE MELEVANIE MELEVANIE MELEVANIE	Wiley Registry of Mass Spectral Data, with NIST 2008 Wiley Registry/NIST library and the complete NIST/EPA/NIH library and 2008 library, including a new release of NIST MS Search software with AMDIS Add to Shopping List	\$9,641.29 new A1Books _, ★★★★☆ 6,669 seller ratings
	Wiley Registry of Mass Spectral Data, 9th Ed. with NIST 2008 (U Ensure Your Lab Has the Most Comprehensive Library Wiley combined the two 2008 library, including a new release of NIST MS Search software with AMDIS Add to Shopping List	\$8,095.00 new Free shipping Amazon.com ★★★★☆ <u>4,159 seller ratings</u>

This library will be:

CC-BY This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation.

Applications and future developments

- A1) Energy research lipid profiling
- A2) Health research lipidomics
- A3) Fundamental research understanding spatial and temporal distribution of lipids in plants and animals

- S1) Side effect: Lipidomics for the masses (use low-cost ion traps)
- F1) Oxylipids and different oxygenated species for medical and age research require sensitive triple-quadrupole MS (QTRAP) or hybrids
- F2) Rare lipid species from health related species (tuberculosis, pestilence)
- F3) Regiospecific databases (from MS³ and MS⁴ data)
- F4) Translation to other molecule classes (requires diverse validation sets)

Thank you!

<u>Fiehn Lab</u>

Dr. Oliver Fiehn (Principal Investigator)

Mine Palazoglu (Library, GC-MS, GCT) **Dr. Tobias Kind (Cheminformatics)** Dinesh Kumar Barupal (Bioinformatics) Gert Wohlgemuth (BinBase) Kirsten Skogerson (NMR, GCxGC) **Dr. Kwang-Hyeon Liu (LC, Pharma)** Sangeeta Kumari (GCT, GC-MS) Sevini Shahbaz (Library) Kristie Cloos (Lipids, MS, GC-MS) Dr. Pierre Ayotte (Docking) John Meissen (UPLC, LC) **Dr. Do Yup Lee (now LBNL Berkley)** Sponsors Fiehn Lab

NIH R01 ES013932 NIH GM078233 & ARRA RC2 NIH R01 DK078328 NIH 1 R21 AI073323-01A1 UC Discovery itl07-10167 NSF MCB 0520140 EU FP7 Health-2007-2.1.4.1/Dupont Agilent, LECO, Waters

Thanks to the useful LipidMaps service! Please apply for beta-testing!

Tandem mass spectrometry (MS/MS)

Iontrap MS/MS spectra creation

Low-resolution LTQ Ion Trap

High-resolution LTQ -FT

